Diseñan “piano humano” para niños invidentes en universidad de Puebla

Un piano con sensores ultrasónicos, cuya función es permitir que niños con discapacidad visual comprendan el fenómeno físico de la onda y desarrollen su sentido auditivo mediante sonidos programados, fue diseñado por el grupo de divulgación científica y tecnológica de la Facultad de Ciencias de la Electrónica de la BUAP.

Foto: BUAP

Al respecto Daniel Mocencahua Mora, investigador de dicha facultad de la Benemérita Universidad Autónoma de Puebla (BUAP) detalló que lo primero es explicar el concepto de onda y frecuencia, junto con sus características.

“Hacemos que los niños aceerquen sus manos a un ultrasonificador, el cual detecta la proximidad de los objetos que tienen enfrente y con base en la distancia emite una determinada frecuencia de sonido”, explicó.

Daniel Mocencahua señaló que durante un taller de divulgación de la ciencia pidieron a los niños con discapacidad visual que alzaran sus manos a diferentes distancias del sensor y que brincaran, para obtener una mayor intensidad de las frecuencias, todo ello para que entendieran de qué forma se emite una onda sonora.

Añadió que posteriormente, los menores fueron colocados en una línea recta, con su torso dirigido hacia el piano, a cierta distancia de los sensores ultrasónicos, los cuales emitieron un determinado sonido al detectar los movimientos que realizaban.

El especialista de la Facultad de Ciencias de la Electrónica de la BUAP explicó que cuando algunos menores daban un paso hacia adelante y otros hacia atrás, los sensores emitían una melodía diferente, en dos escalas, con el objetivo de tocar la canción de “Estrellita”.

Los integrantes del grupo que diseñaron dicho proyecto le llaman el “piano humano”, el cual está conformado por 14 sensores ultrasónicos encargados de emitir una onda de sonido, con una frecuencia tan alta que resulta imperceptible al oído humano y es recuperada por efecto de rebote.

Explicaron que cuando alguno de los sensores detecta una presencia u objeto enfrente, a una distancia de entre 20 y 50 centímetros, envía una señal a una placa de desarrollo basada en un microcontrolador (Arduino), que es el cerebro del sistema cuya función es emitir una nueva señal para que reproduzca la nota musical, de acuerdo con el número del sensor que se activó.

Los integrantes del grupo Hipercubo de divulgación científica y tecnológica de la Facultad de Ciencias de la Electrónica señalaron que mediante este tipo de instrumentos y su aplicación en niños con discapacidad visual, se busca inculcar la idea de que una limitación física no significa una limitación de vida.

Subrayaron que el piano con sensores ultrasónicos es un ejemplo de la labor de divulgación científica de Hipercubo, grupo que en el 2016 cumplió 15 años de haberse formado y que gracias a su amplia trayectoria ganó la Presea Estatal de Ciencia y Tecnología “Luis Rivera Terrazas”.

Los diseñadores de dicho instrumento son Alejandro Torija Méndez, José Jacob Ascencio Ortiz, Viridiana Ramírez Tendilla, César Alonso García Romo, Isidro Pale Córdoba, Mayra Gerónimo Cruz, Mariana Álvarez Chávez, Javier González Pérez y Salomón Junior Tobón León, estudiantes de dicha facultad e integrantes de Hipercubo.

Fuente: terra.com

Crean instrumento para tocar y componer sólo con la mirada.

EyeHarp es un nuevo instrumento musical digital, creado por dos científicos del Grupo de Investigación en Tecnología Musical de la Universidad Pompeu Fabra (UPF) de Barcelona, que permite tocar y componer música utilizando únicamente la mirada, lo que lo hace muy apto para personas con discapacidades.

EyeHarp es un nuevo instrumento musical digital

Zacharias Vamvakousis y Rafael Ramírez son los creadores de un instrumento musical digital controlado a través de la mirada en la que la interacción y la expresividad con el instrumento la hace el usuario seleccionando los acordes y arpegios, la melodía y el volumen, sólo a través de su mirada.

Los científicos recordaron los beneficios que aporta la música y que, por ejemplo, los músicos presentan algunas regiones cerebrales más grandes, mientras que las personas con discapacidad motora tienen dificultades a la hora de aprender a tocar un instrumento musical.

Según los investigadores, aunque se desarollaron interfaces musicales digitales adaptadas (ADMI), esta alternativa es insuficiente para personas con incapacidad motora severa con parálisis muscular completa.

“Para estas personas, una buena alternativa podría ser la tecnología eye-tracking o de seguimiento de la mirada”, según los expertos del Grupo de Investigación en Tecnología Musical.

Hasta el momento, Vamvakousis y Ramírez han completado una fase piloto para estudiar cuantitativa y cualitativamente la usabilidad del EyeHarp desde la perspectiva del intérprete.

Este experimento lo realizaron con 8 personas sin ningún tipo de discapacidad y con conocimientos musicales y un segundo estudio permitió estudiar la interfaz desde la perspectiva del público.

En esta segunda parte, participaron 31 personas que actuaron como audiencia y que valoraron dos conciertos: una interpretación para EyeHarp solo, y otra para EyeHarp, dos guitarras y flauta.

Según Vamvakousis y Ramírez, que han publicado su trabajo en la revista Frontiers in Psychology, “los resultados obtenidos indican que, al igual que los instrumentos musicales tradicionales, el instrumento musical digital que hemos desarrollado tiene una curva de aprendizaje muy pronunciada y permite producir interpretaciones expresivas, tanto desde el punto de vista del intérprete como del público”.

“Estos resultados abren camino para poder disponer del EyeHarp para personas discapacitadas y facilitar el aprendizaje y la interpretación musical, disfrutando, a su vez, de las ventajas cognitivas que, según han evidenciado varios estudios previos, ofrece esta actividad”, aseguraron.

El proyecto recibió financiación del programa de investigación e innovación Horizont 2020 de la Unión Europea, así como de los proyectos españoles TIN (Tecnologías Informáticas para la Sociedad de la Información) dentro del proyecto TIMUL. EFE

Fuente: espectador.com