El Nobel de Física recompensa a los inventores de las bombillas LED

Los científicos japoneses Isamu Akasaki, Hiroshi Amano y el norteamericano Shuji Nakamura obtuvieron este martes el Premio Nobel de Física por haber creado el diodo emisor de luz, LED. “Tuvieron éxito allí donde todo el mundo fracasó”, subrayó el jurado al anunciar el nombre de los ganadores.

20141007-led-shoe-lig.png

El Premio Nobel de Física fue atribuido este martes a los japoneses Isamu Akasaki, Hiroshi Amano y al norteamericano Shuji Nakamura por haber inventado las bombillas de luz LED, ahorradoras de energía.

El jurado del Nobel consideró que los premiados merecían el galardón por “haber inventado una nueva fuente de luz eficaz desde un punto de vista energético y benéfica para el medio ambiente”.

Al inventar las bombillas LED (light-emitting diode, diodo emisor de luz), los científicos “tuvieron éxito en un ámbito en el que todos habían fracaso”, subrayó en Estocolmo el jurado, que calificó el descubrimiento de “revolucionario”.

Isamu Akasaki (85 años) llevó a cabo sus investigaciones con Hiroshi Amano, nacido en 1960, en la Universidad de Nagoya. Por su parte, Shuji Nakamura, que nació en Japón en 1954, se desempeña como investigador en la Universidad de California, y trabajó en el mismo tema en una pequeña empresa japonesa.

Los ganadores deberán repartirse los 883.000 euros tras la ceremonia de entrega de los premios, el 10 de diciembre en Estocolmo.

En: RFi

Leer más

Premio Nobel de Física 2013: Otorgado a François Englert y Peter W. Higgs

El Premio Nobel de Física 2013 ha sido otorgado conjuntamente a François Englert y Peter W. Higgs “por el descubrimiento teórico de un mecanismo que contribuye a nuestra comprensión del origen de la masa de las partículas subatómicas, y que recientemente fue confirmado por el descubrimiento de la predicha partícula fundamental, por los experimentos ATLAS y CMS en el Gran Colisionador de Hadrones del CERN “.

20131008-1385360_449370061849798_598545055_n.png

1. ¿Por qué es tan importante encontrar el bosón de Higgs?
Porque podría contener la respuesta a la siguiente cuestión: ¿cómo decide la naturaleza a qué partículas les asigna masa y a cuáles no? Todas las partículas elementales que forman la materia (seis leptones y seis quarks) tienen masa. Sin embargo otras como el fotón, responsable de la fuerza electromagnética, no tienen masa. La presencia o ausencia de masa podría venir dada por el bosón de Higgs, cuya existencia se propuso en los años sesenta. “Confirmar la existencia del bosón de Higgs en el modelo estándar supondría haber comprendido el mecanismo por el cual las partículas adquieren masa, un mecanismo que en su versión más simple predice la existencia de -al menos- un bosón que cuando interacciona con las otras partículas (quarks, leptones y otros bosones), hace que estas adquieran masa”, explica Teresa Rodrigo, investigadora del Instituto de Física de Cantabria que participa en los experimentos del CERN.

2. ¿Qué es el campo de Higgs?
Para explicar por qué unas partículas tienen masa y otras no, el físico británico Peter Higgs (y simultánea pero independientemente, también Francois Englert, Robert Brout, Gerald Guralnik, Dick Hagen y Tom Kibble) postuló en los años 60 del siglo XX un mecanismo que se conoce como el “campo de Higgs”. Al igual que el fotón es el componente fundamental de la luz, el campo de Higgs requiere la existencia de una partícula que lo componga, que los físicos llaman “bosón de Higgs”. El campo de Higgs sería una especie de continuo que se extiende por todo el espacio, formado por un incontable número de bosones de Higgs. La masa de las partículas estaría causada por una especie de “fricción” con el campo de Higgs, por lo que las partículas más ligeras se moverían por este campo fácilmente mientras que las más pesadas lo harán con mayor dificultad.

3. ¿Quién acuñó el nombre de “partícula de Dios”?
Fue el Premio Nobel de Fïsica Leon Lederman, en el libro “Si el universo es la respuesta, ¿cuál es la pregunta?”. Sin embargo muchos investigadores prefieren el apodo de “la partícula de la botella de champagne”, haciendo alusión a la anécdota según la cual el físico David J. Miller ganó en 1993 una botella de champagne ofrecida por el ministro de ciencia británicoWilliam Waldegrave, que la ofreció como “premio” a quien fuese capaz de explicarle que era el bosón de Higgs.

4. ¿Por qué se usa el LHC para buscar el bosón de Higgs?
La confirmación o refutación de la existencia del bosón de Higgs es uno de los objetivos del Gran Colisionador de Hadrones (LHC, por sus siglas en inglés), el mayor y más potente acelerador de partículas del mundo que opera la Organización Europea para la Investigación Nuclear (CERN) en la frontera franco?suiza, cerca de Ginebra (Suiza). En el interior del anillo del acelerador del CERN colisionan protones entre sí a una velocidad cercana a la de la luz. Según los cálculos los bosones de Higgs deberían producirse en choques frontales entre protones de energías del orden de 20 TeV. Al fin y al cabo, cuanto mayor sea la energía de las partículas que chocan más masa tendrán las resultantes, según la famosa ecuación de Einstein E=mc2. No obstante, el bosón de Higgs no se puede detectar directamente, ya que una vez que se produce se desintegra casi instantáneamente dando lugar a otras partículas elementales más habituales (fotones, muones, electrones…) que sí son detectadas en el LHC.

5. ¿Por qué se habla de probabilidades en lugar de hablar de descubrimiento del bosón de Higgs? ¿Qué significan los “sigmas” de los que hablan los físicos?
El bosón de Higgs no puede observarse directamente porque su tiempo de vida es demasiado corto. Al final de su vida, decae y se transforma en otras partículas que son las que los detectores observan. Por ejemplo, en dos fotones. Pero otros muchos procesos también generan dos fotones, de modo que los científicos tienen que comparar el número de “eventos de dos-fotones” y compararlo con lo que se espera para una determinada partícula.

Para reclamar la paternidad de un descubrimiento, los físicos necesitan tener un exceso de colisiones significativas, lo que precisa de otra magnitud: la desviación estándar o el “número de sigmas”, que establece la significancia estadística de ese descubrimiento. Al hacer el anuncio sobre el bosón de Higgs, Fabiola Gianotti ha dicho: “Hemos observado señales claras de una nueva partícula en el nivel de cinco sigma en la región de la masa alrededor de 126 gigaelectronvoltios (GeV)?. El valor cinco sigma es el nivel mínimo aceptado por la comunidad científica para confirmar el descubrimiento de una partícula, e indica que la probabilidad de que lo que estemos viendo sea fruto del azar es más pequeña que unas pocas partes en diez millones (o que la confianza es del 99,99994%).

Leer más