Archivo del Autor: Patricia Morales Bueno

CALOR DE DISOLUCIÓN. Trabajo presentado por los grupos: Los no se quién, Mad Science, Operación CRAEST, H-204, 2014-2

[Visto: 8164 veces]

20141103-imagen-eq-3.jpg

El calor de disolución se da por la separación de iones dentro de un solvente. Está estrechamente relacionado con la energía de celda y con la entalpia de hidratación.

Listado de conceptos claves
1. Entalpía o calor de reacción: Cantidad que define la relación H = E- PV; el cambio de entalpía, ΔH, para una reacción que tiene lugar a presión constante es el calor que se desprende o se absorbe en la reacción: ΔH= qp.
Brown T., LeMay H. y Bursten B. (1998). Química la ciencia central 7ª edición. México: Prentice Hall Hispanoamericana S.A.

2. Soluto: Sustancia disuelta en un disolvente para formar una solución; normalmente es el componente de una solución que está presente en menor cantidad.

Brown T., LeMay H. y Bursten B. (1998). Química la ciencia central 7ª edición. México: Prentice Hall Hispanoamericana S.A.

3. Disolvente: Es el medio disolvente de una solución; normalmente es el componente de una solución presente en mayor cantidad.

Zaragoza, E. d. (1995). Disolventes en la Industria Química. Zaragoza.

4. Calor de disolución: Es la variación de entalpía relacionada con la adición de una cantidad determinada de soluto a una cantidad determinada de solvente a temperatura y presión constantes.

Castellan, G. W. (1987). Fisicoquímica. En G. W. Castellan, Fisicoquímica (pág. 144).

5. Energía reticular: La energía requerida para separar completamente un mol de un compuesto sólido iónico en sus iones en estado gaseoso se llama energía reticular o de red (U).

Chang R. (2010) Química Décima edición (pp. 259). México: McGraw Hill.

6. Energía de hidratación: Es un nombre especial para la energía de solvatación cuando el disolvente es el agua. En otras palabras, la energía de hidratación, es el cambio de energía cuando los iones en estado gaseoso se disuelven en agua.

Martínez-Álvarez R., Rodríguez J. y Sánchez M. (2007) Química: un proyecto de la American Chemical Society. En Müller G. y Llano M. (Eds.) Soluciones acuosas y solubilidad (pp. 72-153). España: Editorial Reverté

7. Ley de Hess: Es un principio propuesto por el químico German Henry Hess, quien dijo: “La variación de Entalpía en una reacción química va ser la misma si esta se produce en una sola etapa o en varias etapas”. Es decir, que la variación de entalpía de la reacción se puede hallar si se conoce la variación de entalpía de cada proceso que resulta en la variación de entalpía de la reacción química principal.

Arroyo P. (2014, 14 de mayo). Bases de Química General. Fecha de consulta: 14 de septiembre del 2014 de: http://www.quimicayalgomas.com/quimica-general/termoquimica-y-termodinamica/termoquimica-ley-de-hess/

8. Calorímetro: Es un instrumento de laboratorio conformado por un frasco que contiene el sistema rodeado por agua, un termómetro y un agitador en un sistema aislado. Se usa para calcular el valor de la variación de calor durante un proceso.

Picado A., Álvarez M. (2008) Química I: Introducción al estudio de la materia. (pp.414). Costa Rica: EUNED

Aplicación: Uso del nitrato de amonio


El calor de disolución es un proceso que se da en la separación de iones de una sustancia dentro del agua. Este proceso se basa en la separación de iones a una distancia infinita dentro de una red cristalina producida por la presencia de cargas. El agua posee una carga positiva parcial por el lado del hidrogeno, mientras que por el lado del oxígeno tiene una carga parcial negativa. Al disolverse cualquier sustancia iónica se produce una absorción o liberación de energía. La energía de disolución se compone de una energía de red y una de hidratación:
Para el nitrato de amonio se tienen los siguientes datos: U0 (NH4NO3) = 676 kJ/mol DH hidr (NO3-) = – 401 kJ/mol DH hidr (NH4+) = – 301 kJ/mol De los datos se puede calcular el valor de la entalpia de disolución y se observa que el valor aproximado es de 26 Kj/mol. El proceso de disolución del nitrato de amonio es un proceso endotérmico, por lo tanto absorbe el calor de los alrededores disminuyendo la temperatura del entorno. Esta absorción de calor es usada convenientemente para poder bajar la temperatura de manera instantánea ya que la velocidad de reacción es favorable. Esta energía de disolución se aplica en los paquetes fríos que usan los deportistas al sufrir una herida o hinchazón.

20141103-aplica-eq-3.jpg

Dentro de estos paquetes poseen una determinada cantidad de nitrato de amonio que al disolverse en el agua y absorber la temperatura del entorno disminuyen la temperatura del agua hasta -5 C°, por debajo de su punto de fusión. Esta disminución de temperatura es favorable ya que evita que el hinchazón se inflame ya que si se disminuye la temperatura también disminuirá el volumen del hinchazón producido por el golpe.

CRECES (Revista).El calor y el frio en las reacciones químicas. Recuperado el 9 de setiembre del 2014, de: http://www.creces.cl/new/index.asp?imat=++%3E++13&tc=3&nc=5&art=1176

Sigue leyendo

CALOR DE COMBUSTIÓN. Trabajo presentado por los grupos C-Mentales-C, Experimentores y LQP, H-204

[Visto: 2849 veces]

20141103-imagen_eq-2.jpg

(2013) Extinción de Dinosaurios: La Tierra en llamas. Recuperado el 12 de setiembre del 2014, de:

http://www.taringa.net/posts/info/16578928/Extincion-de-Dinosaurios-La-Tierra-en-llamas.html.

 (2012) Tetraedro del fuego. Recuperado el 12  de setiembre del 2014, de:

http://rhr94.blogspot.com/2012/06/tetraedro-del-fuego.html.

 (2011) La agonía del bosque. Recuperado el 12  de setiembre del 2014, de: http://laolladelleprechaun.blogspot.com/2011/07/la-agonia-del-bosque.html.

 (2013) ¿Ya te enteraste cómo se contamina el aire. Recuperado el 12  de setiembre del 2014, de:

http://meganotas.com/ya-te-enteraste-como-se-contamina-el-aire-colabora-por-un-mejor-ambiente/.

 (2013) Avión F-18 despegando de portaviones. Recuperado el 12  de setiembre del 2014, de: http://fondoescritorio.com.es/aviones/avi%C3%B3n-f18-despegando-de-un-portaviones#.VBW-z_l5Ntx

 (2013) Perú requiere 300 mil técnicos al año. Recuperado el 12  de setiembre del 2014, de:

http://laprensa.peru.com/economia/noticia-peru-requiere-300-mil-tecnicos-al-ano-2007

LISTADO DE CONCEPTOS CLAVE

 1.    Calor de combustión: También llamada entalpía de combustión.  Es el calor que se libera cuando reacciona por completo en 1 mol de sustancia en presencia de suficiente oxígeno. Los valores del calor de combustión suelen ser valores negativos, ya que por lo general las combustiones liberan calor hacia el entorno o alrededores.

Ejemplo:

C3H8 (g)   +   5O2 (g)                    3CO2 (g)   +   4H2O (l)  

Chong, M. A. (2009). Colaborativo: ayuda de clase. Química 2 (pp. 271). Lima: Pontificia Universidad Católica del Perú.

 2.    Comburente: Sustancia que capta electrones en una reacción de combustión, tratándose habitualmente del oxígeno atmosférico.

 Martínez, A., Villaseñor, J. & Lobato, J. (2003). Termotecnia básica para ingenieros químicos: Bases de Termodinámica Aplicada (pp. 320). España: Universidad de Castilla La Mancha.

 3.    Combustible: Sustancia que cede electrones en una reacción de combustión, habitualmente compuesta por carbono e hidrógeno en su mayor parte.

 Martínez, A., Villaseñor, J. & Lobato, J. (2003). Termotecnia básica para ingenieros químicos: Bases de Termodinámica Aplicada (pp. 320). España: Universidad de Castilla La Mancha.

 4.    Combustión: Es una reacción química en la que una sustancia reacciona rápidamente con oxígeno liberando luz y calor. Generalmente son reacciones en cadena a través de radicales libres, que se pueden resumir en la oxidación del carbono para formar sus óxidos y la oxidación del hidrogeno dando agua.

 Costa, J. M. (2005). Diccionario de química y física (pp. 893). Barcelona, España: Editorial Díaz.

 5.    Entalpía estándar de formación: Es el cambio de calor relacionado cuando se forma 1 mol de compuesto a partir de sus elementos a una presión de 1 atm.

 Chang, R. (2010). Termoquímica. Química (10ª ed., pp. 253). México, D.F.: The McGraw-Hill Companies, Inc. /Interamericana Editores, S.A.

 6.    Poder calorífico específico: Calor liberado en la combustión completa de un kilogramo de combustible, supuesto que los gases de combustión, combustible y comburente se encuentran a la misma temperatura.

 Martínez, A., Villaseñor, J. & Lobato, J. (2003). Termotecnia básica para ingenieros químicos: Bases de Termodinámica Aplicada (pp. 321). España: Universidad de Castilla La Mancha.

APLICACIÓN

1.    El calor de combustión, como un valor expresado en KJ/mol, resulta bastante útil para calcular las entalpías de formación de algunas sustancias orgánicas que poseen H, C y O en su estructura; por ejemplo, los hidrocarburos. Esto se debe a que este tipo de compuestos comúnmente participan en las reacciones de combustión para la generación de energía (los hidrocarburos son combustibles y también la principal fuente de energía actualmente. Por ello, el calor de combustión es un concepto muy asociado a esta clase de sustancias; de hecho, es una propiedad característica y bien conocida de los hidrocarburos, por ejemplo.

Conociendo el valor del calor de combustión de una sustancia, es posible determinar su calor de formación, pero se necesita información adicional; por ejemplo, las entalpías de formación de algunas de las sustancias que intervienen en la reacción y de los productos generados. Si el compuesto que analizamos contiene solo H, C y O, los productos generalmente son CO2 (g) y H2O (l) o H2O (g); por ello, se necesita conocer las entalpias de formación del dióxido de carbono gaseoso y el agua líquida (o gaseosa). En algunas ocasiones pueden generarse otros productos adicionales, lo cual dependerá de las sustancias que reaccionan; en ese caso, se deberá conocer también sus entalpías de formación. Ya con esta información es posible calcular el calor de formación del compuesto orgánico mediante el método para calcular calor de reacción usando entalpías de formación. En este caso, nuestro calor de reacción es el calor de combustión y nuestra incógnita es la entalpía de formación del compuesto orgánico. A continuación se muestra un ejemplo:

 

Referencia 20141103-ejemplo-eq-2.jpg

 

Ragatz, R. A., Hougen, O. A. & Watson, K. M. (1982). Termoquímica. Principios de los procesos químicos (Vol. 1, pp. 301-384). Barcelona, España: Reverté, S.A.

2.    Si hablamos del calor de combustión, no como un simple valor, sino como la energía liberada durante un proceso de combustión, entonces las aplicaciones son múltiples:

20141103-aplica-eq-2.jpg

GENERACIÓN DE MOVIMIENTO

Para empezar, este calor es y ha sido, por muchos años, la principal fuente de energía en casi todo el mundo; una aplicación muy común y que todos conocemos de una u otra forma es para el motor de combustión interna.

Un motor de combustión interna es un tipo de máquina que obtiene energía mecánica directamente de la energía química de un combustible que se quema dentro de una cámara de combustión (el cilindro); la combustión se produce dentro de la máquina misma. En el proceso de combustión se aspira una mezcla de aire y combustible hacia el interior del cilindro y se comprime mediante un pistón en movimiento. La mezcla comprimida se enciende para generar la energía (calor de combustión) necesaria para el movimiento del vehículo. Cuando ocurre la combustión, los gases de la mezcla de aire y el combustible que se quema se expanden dentro del cilindro a una presión muy alta; esta presión empuja el pistón hacia abajo en el cilindro. El pistón está conectado a una biela y otras partes (el cigüeñal) que se encargan de convertir el movimiento hacia arriba y hacia abajo del pistón en movimiento rotatorio, el cual se transfiere a las ruedas del vehículo para permitir su movimiento. Casi todos los motores modernos son motores con ciclo de cuatro tiempos, lo cual significa que el pistón se mueve a lo largo de la longitud del cilindro cuatro veces para completar un ciclo de combustión.

Este es el funcionamiento básico de todo motor de combustión interna; desde luego, existen pequeñas diferencias de acuerdo al tipo de motor, por ejemplo, el motor de encendido por chispa y el motor de encendido por compresión. La diferencia primordial entre estos es que en el de compresión el combustible es rociado directa y completamente dentro del cilindro; mientras que en el encendido por chispa, el combustible se bombea primero en un sistema de ingesta donde se mezcla con aire antes de entrar al cilindro y encenderse. Esta diferencia acarrea otras en cuanto a la eficiencia, la potencia, la relación aire-combustible, el proceso de encendido, etc.

Esto es todo lo que hay saber sobre los motores por ahora, porque lo realmente concerniente es la combustión y el calor que genera y hace posible el funcionamiento del motor. Es evidente la utilidad del calor de combustión en los motores, pues está energía incrementa la temperatura y la presión en el interior del cilindro, provocando que los gases se expandan y empujen el pistón, cuyo movimiento se transforma en movimiento rotatorio mediante un sistema de biela. En este caso, el calor de combustión (energía) se ha transformado en trabajo que hace posible el movimiento de un  vehículo. Su importancia salta a la vista, ya que casi todos los vehículos en el mundo emplean el calor generado por la combustión como fuente de energía; gracias a ello, podemos movilizarnos diariamente, la vida sería muy complicada sin los autos o buses que empleamos para desplazarnos.

 

Referencia

Fygueroa, Simón J. & Araque, Jesús O. (2005). Combustión en MCIA. El proceso de combustión en motores de combustión interna (1ra ed., pp. 1-24). Mérida, Venezuela: Editorial Venezolana.

Sigue leyendo

CALOR DE REACCIÓN. Trabajo presentado por los grupos Electrólisis, Los Alquimistas y Adamantium

[Visto: 8998 veces]

20141103-imagen_blog1.jpg

CONCEPTOS

2.1.        Primera ley de la Termodinámica

 Cualquier energía perdida por el sistema debe ser ganada por su entorno, a esta conservación de energía se le conoce como la Primera ley de la Termodinámica.

 Energía interna (ΔE): Suma de todas las energías cinéticas y potenciales del sistema.

 

                            ΔE = q + w

Cuando el sistema absorbe calor se le denomina proceso endotérmico y cuando la pierde, exotérmico.

   +

q

w

Δ

Gana calor

Trabajo sobre el sistema

Ganancia neta de energía

Pierde calor

Trabajo del sistema

Perdida neta de energía

.

Función estado: El valor de una función estado no depende de cómo se llevo a cabo el cambio de estado del sistema, solo el estado inicial y el final. ΔE es una función  estado.

 H. Eugene LeMay,JR., Theodore L. Brown, Catherine J. Murphy, Bruce E. Bursten y Patrick M. Woodward. (2014). Química: La ciencia central (pp.164-168). Cámara Nacional de la Industria Editorial Mexicana.

 

2.2.   Entalpía(H)

 La entalpía es una función que se debe a la relación de tres funciones de estado: E, P y V.

                                               H=  E + PV

 El trabajo en un proceso donde la presión es constante se halla de la siguiente forma:

                                              

w= -P ΔV

 Cuando ocurre un cambio a presión constante lo que sucede es lo siguiente:

                                              ΔH= ΔE + PΔV=(q + w) – w = q perdido

 La entalpía de reacción o calor reacción  es la que acompaña a una reacción química.

 H. Eugene LeMay,JR., Theodore L. Brown, Catherine J. Murphy, Bruce E. Bursten y Patrick M. Woodward. (2014). Química: La ciencia central (pp.169- 171). Cámara Nacional de la Industria Editorial Mexicana.

 2.2.   Entalpías de formación (ΔHF0)

 Un proceso empleado para tabular los datos termoquímicos es la formación de un compuesto a partir de sus elementos constitutivos. El cambio de entalpía asociado con este proceso se conoce como entalpía de formación (ΔHF).

El cambio de entalpía estándar (ΔH0)  de una reacción se define como el cambio de entalpía cuando los reactivos y los productos se encuentran en su estado estándar.

 Estos dos conceptos (ΔHF y ΔH0) nos sirven para poder entender la entalpía de formación estándar (ΔHF0), que es el cambio de entalpía de un mol de compuesto a partir de sus elementos constitutivos en un estado estándar, y la que se usa para poder hallar el calor reacción de las reacciones químicas.

 

            ΔH0 = (Sumatoria de ΔHF0 de los productos) – (Sumatoria de ΔHF0 de los reactantes)

 

Ejemplo:

2 NH3(g) → N2H4(l) + H2(g)                      ΔH0298 = ?

 ΔH0298 = [ΔHF0 (N2H4(l)) +  ΔHF0 (H2(g))] – 2 ( ΔHF0 (NH3(g)))

 ΔHF0= [50,63 kJ/mol + 0 kJ/mol] – 2 (- 46,3 kJ/mol)

 ΔH0298 = 143,23 kJ

 H. Eugene LeMay,JR., Theodore L. Brown, Catherine J. Murphy, Bruce E. Bursten y Patrick M. Woodward. (2014). Química: La ciencia central (pp.183-185). Cámara Nacional de la Industria Editorial Mexicana.

 2.3.   Energias de enlace

 Las entalpías de enlace promedio sirven para estimar el calor reacción de las reacciones en las que se rompen enlaces y se forman nuevos. Se considera que cuando ser rompen enlaces se gana energía (endotérmico) y cuando se crean se pierde energía (exotérmica).

Imagine una reacción química y analice dos etapas:

  1. Para poder romper los enlaces de los reactantes se necesita proporcionar energía, por lo tanto la entalpía del sistema aumentara por las entalpías de enlaces rotos.
  2.  Para poder generar enlaces en los productos se libera energía, por lo tanto la entalpía del sistema disminuirá.

 ΔH= (Sumatoria de entalpías de enlaces rotos) – (Sumatoria de entalpías de nuevos enlaces)

Ejemplo:

 

    H H

     I   I

H-C-C-            H (g) + 7 O2 (g) à 4 O=C=O + 6 H-O-H

     I   I

    H H

 

ΔH= [12(C-H) + 2(C-C) + 7(O2)] – [8(C=O)+ 12(O-H)]

 

ΔH=[12(413 KJ) + 2(348 KJ) + 7(495 KJ)] – [8( 799 KJ) + 12(463 KJ)]

 

ΔH= -2831 KJ

 

 

H. Eugene LeMay,JR., Theodore L. Brown, Catherine J. Murphy, Bruce E. Bursten y Patrick M. Woodward. (2014). Química: La ciencia central (pp.316). Cámara Nacional de la Industria Editorial Mexicana.

2.5.        Ley de Hess

La ley de Hess establece que si una reacción se produce en etapas, la ΔH de la reacción será igual a la suma de las entalpías  de las etapas individuales. Como la entalpía es una función estado, es decir que no depende de su trayectoria, la ley de Hess se puede aplicar siempre y cuando se conozco la trayectoria de la ΔH de cada proceso. Esto permite calcular un gran número de reacciones mediante un grupo de reacciones pequeñas.

Es muy útil debido a que te ayuda a encontrar la ΔH de reacciones difíciles de medir directamente. Ejemplo:

 

CH4 (g) + 202(g) à CO2 (g) +2H2 (l)   ΔH= -802 KJ

 

(sumar)   2H2O (g) à  2H2O (l)           ΔH= -88 KJ

————————————————————————

CH4 (g) + 2O2 ( g)+ 2H2O (g) à CO2 (g) + 2H2O (l) + 2H2O (g) ΔH=-890 KJ

 

Ecuación neta: CH4 (g) + 2O2 (g) à CO2 (g) + 2H2O (l)

 H. Eugene LeMay,JR., Theodore L. Brown, Catherine J. Murphy, Bruce E. Bursten y Patrick M. Woodward. (2014). Química: La ciencia central (pp.181-182). Cámara Nacional de la Industria Editorial Mexicana.

 2.6. Calorimetria

 Hay una forma experimental de poder hallar la ΔH midiendo flujo de calor que acompaña a una reacción a presión constante. Esta medición de flujo de calor se conoce como calorimetría debido a que en esta se usa el calorímetro.

 Capacidad calorífica(C).- Es la cantidad de calor requerido para elevar su temperatura 1K.

Calor específico(c).- Que es la capacidad calorífica de un gramo de sustancia. Y se determina de la siguiente forma:

 Calor especifico= (cantidad de calor transferido)/ (gramos de sustancia) X (cambio de temperatura)

 Calorimetría a presión constante:   Calor de absorbido o liberado = q disoln

 q disoln = (calor especifico de la disolución) X (gramos de disolución) X  ΔT    = -q rxn

 

Exotérmico Endotérmico

q lib= q reacción

q ab = q calrim + q solución

q calrim = C ΔT

q solución= m c ΔT        q lib + q ab=0

q ab= q reacción

q lib = q calrim + q solución

q calrim = C ΔT

q solución = m c ΔT           q lib + q ab = 0

 Calorimetría a volumen constante (bomba calorimétrica): 

 q rxn = -Ccalorim x ΔT

 

q lib= q rxn                                        q lib + q ab = 0

q ab= q H2O +q bomba

q H2O= m c ΔT

q bomba= C ΔT

 ΔH=  E + RTΔn

 H. Eugene LeMay,JR., Theodore L. Brown, Catherine J. Murphy, Bruce E. Bursten y Patrick M. Woodward. (2014). Química: La ciencia central (pp.175-178). Cámara Nacional de la Industria Editorial Mexicana

Aplicación

 El estudio sobre el calor específico nos ha traído muchos beneficios de diversos tipos, como la implementación en las nuevas construcciones y por otro lado, un mayor control sobre lo que consumimos.

Una de las aplicaciones del calor de reacción es el implemento de aparatos que soporten temperaturas muy altas sin que puedan ser alteradas, ya que conociendo el calor específico se puede tener la seguridad de poder usar ciertos materiales al momento de hacer experimentos o fabricaciones  a temperaturas altas. De igual forma, se pueden emplear materiales, con calor específico alto, en las nuevas construcciones diseñadas contra los incendios.
Otra de las aplicaciones de estas leyes, es el uso de los automóviles y medios de transporte a vapor, ya que usan la combustión de cierta materia en una determinada temperatura y la presión para hacer trabajar un pistón y así, poder hacer girar las ruedas necesarias.
El calor de reacción también se usa en la alimentación, ya que sabiendo el calor específico de cada alimento, se podrá saber las calorías que aportará al cuerpo humano. Teniendo un mayor control de las calorías consumidas y calorías quemadas se logrará un mayor balance y así, una mejor salud.

Sigue leyendo

ENTROPÍA Y ESPONTANEIDAD. Trabajo presentado por los grupos Eureka, Los Alquimistas y Los hijos de Montero (H-202, 2014-2)

[Visto: 4686 veces]

20141103-imagen_entropia_y_espontaneidad.jpg

Conceptos clave

  1. Espontaneidad:

 Un proceso espontáneo es un proceso que tiene una tendencia natural a producirse sin tener que ser realizado por una influencia externa. El proceso reverso a un cambio espontaneo es no espontaneo. Él punto en el que cambia el sentido de la espontaneidad es en el punto de equilibrio.

Tema 10 “Termoquímica y espontaneidad”. Química General. Clase B. Cursos 1993/94 – Universidad de Alcala (UAH). http://www2.uah.es/edejesus/resumenes/QG/Tema_10.pdf.

  1. Proceso reversible e irreversible:
  • Proceso reversible:

“Un sistema cambia de tal forma que el sistema y el entorno pueden volver a sus estados originales, revirtiendo exactamente el cambio”

  • Proceso Irreversible:

“No puede simplemente revertirse para restablecer al sistema y a su entorno a sus estados originales”

Brown, T., LeMay, E., Bursten, B y Murphy, C. (2009). “Termodinámica Química”. En Química la Ciencia Central. México: PEARSON EDUCACIÓN (pp.805). 

  1. Entropía:

“Medida del grado de dispersión de la energía en un sistema entre las diferentes posibilidades en que ese sistema puede contenerla” (Chang 2013: 780-781).Es una función de estado; y gracias a esta podemos predecir si es un proceso espontáneo, reversible o no espontáneo. Se calcula con las siguientes fórmulas, tomando como S la entropía:

ΔSuniverso = ΔSentorno+ ΔSsistema

ΔSsistema = ΔSsistema = ∑ nS°productos – ∑ mS°reactivos

     Donde n y m son sus coeficientes

ΔSentorno=- ΔH/T                          

            Donde  ΔH es la entalpía del entorno y T la temperatura en grado Kelvin       

Chang, R. Y Goldsby K. (2013). “Entropía, energía libre y equilibrio”. En Química. México: McGraw Hill Education. (pp780-781).

  1. Segunda Ley de la Termodinámica:

“La entropía del universo aumenta en un proceso espontáneo y se mantiene constante en un proceso que se encuentra en equilibrio”. Matemáticamente, la segunda ley de la termodinámica se puede expresar:

  • Para un proceso espontáneo:

 ΔSuniverso = ΔSalrededores+ ΔSsistema>0

  • Para un proceso en equilibrio:

      ΔSuniverso = ΔSalrededores+ ΔSsistema=0

Chang, R. Y Goldsby K. (2013). “Entropía, energía libre y equilibrio”. En Química. México: McGraw Hill Education. (pp785).

  1. Microestados:

Es un solo arreglo posible  de las posiciones y energías cinéticas de las moléculas de gas cuando este se encuentra en un estado termodinámico específico. Su relación entre microestados y entropía se registra en la ecuación de Boltzmann:

20141103-conceptos-eq-2.jpg

Fuente: http://cienciasdejoseleg.blogspot.com/2013/03/entropia-estandar.html

Brown, T., LeMay, E., Bursten, B y Murphy, C. (2009). “Termodinámica Química”. En Química la Ciencia Central. México: PEARSON EDUCACIÓN (pp.810-811).

  1. Tercera Ley de la Termodinámica:

“La entropía de una sustancia cristalina pura en el cero absoluto es cero”. Debido a que en esas condiciones los movimientos moleculares son mínimos y el número de microestados es uno. En base de la ecuación de Boltzmann se demuestra

                S=KlnW, como W=1

                S=Kln1=0

 Chang, R. Y Goldsby K. (2013). “Entropía, energía libre y equilibrio”. En Química. México: McGraw Hill Education. (pp789).

Brown, T., LeMay, E., Bursten, B y Murphy, C. (2009). “Termodinámica Química”. En Química la Ciencia Central. México: PEARSON EDUCACIÓN (pp.816).

  1. Energía Libre de Gibbs:

Es la energía liberada por un sistema para realizar trabajo útil a presión constante, es utilizada a fin de  determinar la espontaneidad de una eracción de una más directa. Está representada en la siguiente ecuación:

 

ΔG° = ∑ΔG°productos – ∑Δ°Greactantes

                                         ∆G = ∆H – T∆S

Donde:

∆G es la variación de la energía libre

∆H es la entalpía

T es la temperatura

∆S es la entropía

            La relación entre signo de ∆G y la espontaneidad es la siguiente:

  • Si ∆G es negativo, la reacción es espóntanea en el sentido directo.
  • Si ∆G es cero, la reacción está en equilibrio.
    • Si ∆G es positivo, la reacción es el sentido directo, no es espontánea;   es necesario que el entorno realice un trabajo para que esta ocurra. Sin embargo, la reacción inversa será espontánea.

Brown, T., LeMay, E., Bursten, B y Murphy, C. (2009). “Termodinámica Química”. En Química la Ciencia Central. México: PEARSON EDUCACIÓN (pp.820).

Enríquez García, R. “Energía Libre y Espontaneidad”. Proyecto INFOCAB SB 202507. http://prepa8.unam.mx/academia/colegios/quimica/infocab/unidad118.html

 Ejemplo aplicativo:

Este ejemplo aplicativo ilustra al concepto de entropía y espontaneidad, dado que aplica todo lo aprendido en esta sesión.

Este ejemplo describe la combustión del propano el cual es inflamable, ya que al mínimo contacto con un agente reactivo como un palito de fosforo encendido podría generar desde incendios hasta explosiones de gran magnitud.

Para este caso la presión es despreciable, ya que la reacción se puede llevar a cabo en cualquier ambiente cercano o remoto al nivel del mar.

A continuación, se presencia la ecuación de combustión del propano

C3H8(g)   +  5O2(g)         =          3CO2(g)  +  4H2O(l)     ▲H=?kJ/mol

▲H=▲Hproductos-▲Hreactivos

▲H= (3*(-393.5kJ/mol)+4*(-285.8kJ/mol))-(-103.8kJ/mol+5(0kJ/mol))

▲H=-2219.9kJ/mol                                        ▲H<0  Esto significa que libera calor.

 

C3H8(g) + 5O2(g)        =           3CO2(g) + 4H2O(l)  ▲H=-2219.9kJ/mol

Para determinar la espontaneidad del proceso llevado a cabo en la reacción se calculara su entropía de formación de la siguiente manera:

▲Ssist=▲Sproductos-▲Sreactivos

▲Ssist= (3(213.8J/mol K)+4(70J/mol K ))-(5(205.2J/mol K)+270.3J/mol K )

▲Ssist= -374.9J/mol K

▲Sent= -▲Hsist/T=-((-2219.9kJ/mol)/298K)= 7.449 kJ/mol K *1000J/1kJ=7449.3 J/mol K

▲Sent>0                                           

▲Sent+▲Ssist= ▲Suniv

▲Suniv = (7449.3-374.9) J/mol K

▲Suniv=7074.4J/mol K                                         ▲Suniv>0   :  El proceso fue espontaneo

Se cumple la segunda ley de la termodinámica.

ΔG°=(3(-394.4kJ/mol)+4(-237.1kJ/mol))-(-23.4kJ/mol+5(0))=-2110.6 kJ/mol

ΔG°<0: La reacción es espontánea

Además se cumple la convención sugerida en la relación de entropía, entalpía y energía libre de Gibbs que “si ▲H<0 y  ▲Suniv>0, entonces ▲G<0 será siempre independientemente de la temperatura”[1]                     

A continuación se muestra imágenes de su uso en la vida diaria.

Para el presente caso, el propano es útil para ser vendido en balones de gas para cocinar toda clase de alimentos que requieran cocción tales como el pollo a la olla, el lomo saltado y entre otros.

 


[1] Chang, R (2010). Química décima edición Williams College. .México: McGraw-Hill Companies. Inc

20141103-aplicacion-eq-2.jpg

En este video se puede ver un experimento breve sobre el gas propano para ilustrar la cocina de gas

https://www.youtube.com/watch?v=YrrBiKhYm9Q

En este video se puede ver el grado de peligro que puede conllevar el mal uso del gas propano

Advertencia para los que pretendan usar gas propano inadecuadamente.

https://www.youtube.com/watch?v=T3yZux1F_dc

Su uso industrial es variado.Desde la siderurgia hasta la metalurgia. 

El presente video muestra se hacen los balones de gas propano

https://www.youtube.com/watch?v=1lBhUQ-9KGs

CALOR DE COMBUSTIÓN. Trabajo presentado por los grupos Main y Experimentiras, los 4 fantásticos no participaron

[Visto: 2488 veces]

20141103-imagen_calor_de_combustion.jpg

Castillo M. (2012, 18 de mayo). El motor Stirling. Recuperado el 12 de setiembre del 2014, de:

http://ladysnider15.blogspot.com/2012/05/el-motor-stirling-fue-inventado-por-el_18.html

APLICACIONES

Las aplicaciones del calor de combustión son varias, pero una de las más importantes, por ser vital en la vida del hombre, es en el uso de cocción de los alimentos para su nutrición. Un ejemplo sería el gas propano, cuyo uso en la cocina es extendido. El gas propano, para que brinde calor para cocinar, necesita reaccionar en una combustión.

 

20141103-rx_combustion.jpg

El valor – 2218,8 es el calor de combustión del propano; es decir, que es la cantidad de calor que libera (ya que se antepone el signo  – ) el propano al reaccionar en una combustión. Este calor es aprovechado para generar una energía que entre en contacto con las ollas y así cocer los alimentos que se encuentren en ellas. El gas propano viene en balones de gas para el uso doméstico. 

20141103-imagen_aplicacion.jpg

Imágenes adquiridas:

http://4.bp.blogspot.com/-RjRpL2qagrU/UmmLhlpBw1I/AAAAAAAACbw/gFU0X4-gWsI/s320/PROPANO+(1).png

http://1.bp.blogspot.com/_n6PiOglRaoE/TK-1FpcUSYI/AAAAAAAAA9g/jkkz1vjF_2k/s1600/hervir1.jpg

 

Bibliografía:

13 de Junio de 2013. El propano: una buena solución para calentar tu casa. Recuperado el 14 de setiembre de 2014 en:

http://www.elblogenergia.com/articles/el-propano-una-buena-solucion-para-calentar-tu-casa

 

Sigue leyendo

Hidrólisis de sales y Soluciones Buffer

[Visto: 9756 veces]

Trabajo presentado por Equipo 3: Left 4 dead y Equipo Rocket

20140623-imagen-eq3-2.jpg

Conceptos clave

Ácidos y bases:

 Según la definición de Arrhenius los ácidos son sustancias que producen iones H+ en agua y las bases son sustancias que producen iones OH- en agua. Luego de un tiempo, el concepto de ácidos y bases según Arrhenius se estableció de la siguiente forma:

-Un ácido es una sustancia que, cuando se disuelve en agua, aumenta la concentración de    iones H+.

-Una base es una sustancia que, cuando se disuelve en agua, aumenta la concentración de iones OH.

 El concepto de Arrhenius sobre los ácidos y las bases, aunque es útil, tiene una limitación:

Está restringido a las disoluciones acuosas; debido a esto los químicos Johannes Bronsted y Thomas Lowry propusieron de forma independiente una definición más general de los ácidos y las bases. Su concepto se basa en el hecho de que las reacciones acido-base involucran la transferencia de iones H+ de una sustancia a otra.

 BROWN, T. (2009) “Química La Ciencia Central”. Decimoprimera edición (pp. 668 – 670). Traducción de Laura Fernández Enríquez. México: PEARSON EDUCACIÓN

Sigue leyendo

CELDAS GALVÁNICAS

[Visto: 5248 veces]

Trabajo presentado por el Equipo 4: Reacción 0. H2O2, Quimitube

20140616-imagen_eq4.jpg

Fuente: 

http://3.bp.blogspot.com/_gdF2rNEjn8I/TEyNImRKoDI/AAAAAAAAAGI/62oxcmi-xzc/s1600/6.gif

CONCEPTOS CLAVE

  • Celda electroquímica: Es un dispositivo capaz de obtener energía eléctrica a partir de reacciones química.

BIBLIOGRAFIA:

Química. American ChemicalSociety. Editorial Reverté, 2005. ISBN: 8429170014. Pág. 680

Sigue leyendo