Archivo del Autor: Patricia Morales Bueno

ENTROPÍA Y ESPONTANEIDAD. Equipo 4: Quasars, Gases Nobles, Kripton

[Visto: 2017 veces]

imag1-eq4-202-q2151

imag2-eq4-202-q2151

Conceptos Claves

1.- Procesos Espontáneos:

Se dice que un proceso es espontáneo si ocurre por cuenta propia sin intervención alguna del exterior; es decir, ocurre por sí mismo en un sentido definido a ciertas condiciones como la temperatura y la presión

Brown, Theodore (2009). QUÍMICA la Ciencia Central (pp. 802). México: Person educación

2.- Entropía:

Es la medida del grado de dispersión de la energía en un sistema entre las diferentes posibilidades en que ese sistema puede contenerla. A mayor dispersión mayor entropía. La mayoría de procesos está acompañado por un cambio de entropía. Las unidades de entropía son J/K o J/K por 1 mol de sustancia1. Es una característica del estado de un sistema2.

1Chang, Raymond (2013). QUÍMICA 11° edición (pp. 780). México: Mc Graw Hill Education

2Brown, Theodore (2009). QUÍMICA la Ciencia Central (pp. 806). México: Person educación

3.- Entropía estándar de reacción:

Cambio de entropía cuando la reacción se lleva a cabo en condiciones estándar; es decir, es la entropía absoluta de una sustancia a 1 atm. Y 25°C

Chang, Raymond (2013). QUÍMICA 11° edición (pp. 784). México: Mc Graw Hill Education

4.-  Cambio de entropía:

Es una función de estado como la energía interna y la entalpía, por lo tanto, el cambio de entropía de un sistema depende solo de los estados inicial y final del sistema y no de la trayectoria que se siguió para pasar de un estado a otro.

Brown, Theodore (2009). QUÍMICA la Ciencia Central (pp. 806). México: Person educación

5.-  Movimientos moleculares:

Cuando una sustancia se calienta el movimiento de las moléculas aumenta. Las moléculas pueden presentar tres tipos de movimientos. La molécula completa puede moverse en un sentido, como los movimientos de las partículas de un gas ideal. A estos movimientos le llamamos movimientos de traslación. Las moléculas de un gas tienen más libertad de movimiento que las de un líquido, las cuales a su vez tienen mayor libertad de traslación que las moléculas de un sólido.  Una molécula también puede experimentar movimiento traslatorio en el que los átomos de las moléculas se mueven periódicamente acercándose y alejándose. Otro tipo de movimiento es el de la rotación como si estuviese girando como trompo. Estas formas diferentes de movimientos son formas en las que una molécula puede almacenar energía y nos referimos a ellas de forma colectiva como energía de movimiento de la molécula.

Brown, Theodore (2009). QUÍMICA la Ciencia Central (pp. 809-810). México: Person educación

6.- Segunda ley de termodinámica:

La entropía del universo aumenta en un proceso espontaneo y se mantiene constante en un proceso que se mantiene en equilibrio.

Brown, Theodore (2009). QUÍMICA la Ciencia Central (pp. 785). México: Person educación

7.- La tercera ley de termodinámica:

La entropía de una sustancia cristalina es cero a la temperatura de cero absoluto. A medida que la temperatura aumente la libertad de movimiento se incrementará; es decir, la entropía aumenta de forma gradual como consecuencia del mayor movimiento molecular.

Brown, Theodore (2009). QUÍMICA la Ciencia Central (pp. 789). México: Person educación

8.- Entropía absoluta:

Es la entropía de la sustancia a 298K. Este es el valor verdadero y no un valor derivado

Brown, Theodore (2009). QUÍMICA la Ciencia Central (pp. 790). México: Person educación

 

  1. Aplicación:

En el caso de entropía y espontaneidad.

Describiré el proceso de funcionamiento de un motor petrolero ( automóvil diésel )  ,  para esto debemos de conocer el funcionamiento de un cigüeñal con los pistones (cilindros)  a estos pistones , que tienen esa forma de cilindro ,   una vez que entra el aire y el petróleo a presión atmosférica el volumen aumenta , una vez que se juntan el aire y el petróleo – estos combustionan sin necesidad de un factor externo como la chispa – se comprime adiabáticamente el  volumen , y la temperatura aumenta . Realizándose  así un alto grado de entropía. Durante este tiempo la presión y la temperatura aumentan rápidamente,  aunque el volumen permanece constante, liberando energía para que así junto a los demás pistones comiencen a moverse haciendo la misma función que es la de liberar energía  y poder iniciar el movimiento del automóvil. Este proceso es irreversible, pero no espontaneo.

 

Prof. López Ávila.     Maquinas termodinámicas y La segunda ley de la Termodinámica

Física II    comision2k1/2s1 http://apuntescientificos.org/segunda-ley-qbp.html

 

Un caso que es Espontaneo  es en el caso que en cierta parte alta de un cerro haya un molino de agua donde el calor descienda de esta fuente que se encuentra a  temperatura elevada, hacia una fuente de temperatura fría  que podría ser un sumidero, generando trabajo durante su paso. Este proceso es irreversible.

Dra. Sofía Arellanos Cárdenas, Dra. Socorro López Cortez, Dra. Lucía Ramírez Torres e Ing. Juan Carlos Mares Gutiérrez.

Miembros de la academia de Fisicoquímica del departamento de Biofísica de la Escuela Nacional de Ciencias Biológicas del                                                               Instituto Politécnico Nacional de México.

http://apuntescientificos.org/segunda-ley-qbp.html

CALOR DE COMBUSTIÓN. Equipo 2: The Flash, Nitrato de aprobar, Antimateria

[Visto: 3076 veces]

imagen-eq2-202-q2151

Imágenes tomadas de:

  • Conceptos

 

  • Fenómenos térmicos: Están relacionados con la emisión y la absorción del calor, también existen cuerpos que ceden energía en forma de calor, y otros que son capaces de absorber dicha energía.

Pérez Ruiz, O. y Villegas Sáez A. (Sin fecha). Calor de combustión y el ahorro de energía:

<http://www.cubasolar.cu/biblioteca/energia/Energia20/HTML/articulo06.htm>

 

  • Combustión: Es el conjunto de procesos físico-químicos en los que un elemento combustible se combina con otro elemento comburente (O2 gaseoso), desprendiendo luz, calor y productos químicos resultantes de la reacción (oxidación).

Domínguez Cerdeira, José M. (23 de Enero de 2013). Jornada sobre calderas eficientes en procesos industriales: Conceptos de combustión y combustibles.

<http://www.fenercom.com/pages/pdf/formacion/13-01-23_Jornada%20calderas%20industriales/01-Conceptos-de-combustion-y-combustibles-GAS-NATURAL-SDG-fenercom-2013>

  • Calor de combustión: Es el calor que se libera en la combustión de un mol de compuesto orgánico.Suarez, T. (2005). Principios de termoquímica.
  • <http://www.saber.ula.ve/bitstream/123456789/16744/1/termoquimica.pdf>
  • Calorímetro: Es un recipiente cerrado diseñado específicamente para medir los cambios de calor de los procesos físicos y químicos.Chang, R. (2010). Termoquímica. Química (pp. 245-246). México: McGRAW-HILL/INTERAMERICANA EDITORES S.A
  • Calor específico: Es la cantidad de calor que se requiere para elevar un grado Celsius la temperatura de un gramo de la sustancia. Unidades J/g x °C.

Chang, R. (2010). Termoquímica. Química (pp. 245-246). México: McGRAW-HILL/INTERAMERICANA EDITORES S.A

 

  • Capacidad calorífica: Es la cantidad de calor que se requiere para elevar un grado Celsius la temperatura de determinada cantidad de la sustancia. Unidades J/°C

Chang, R. (2010). Termoquímica. Química (pp. 245-246). México: McGRAW-HILL/INTERAMERICANA EDITORES S.A

 

  • Aplicaciones

 

 

En la actualidad, el desarrollo de los países está fuertemente relacionado con el consumo de energía de combustibles fósiles, los cuales son las principales fuentes de energía y se produce mediante la combustión. La combustión consiste en una reacción química de oxidación,  consiste de un elemento que arde y otro que produce la combustión, generalmente el O2 (g).

El calor de combustión es usado como fuente de energía en las fábricas (uso industrial), en hogares (uso doméstico), en los vehículos (uso para el transporte).

Uso Industrial: Elementos utilizados para la combustión

  • Gas Natural
  • Gas Licuado
  • Kerosene

Uso Doméstico: Elementos utilizados para la combustión

  • Gas Propano
  • Gas Natural
  • Leña
  • Carbón

Uso para el Transporte: Elementos utilizados para la combustión

  • Gasolina
  • Diésel
  • Gas Natural

Referencias:

-Ministerio de energía y minas. Preguntas frecuentes en relación al gas natural en el Perú: Usos del gas natural. Recuperado el 19 de abril del 2015, de:

http://www.minem.gob.pe/minem/archivos/usogas.pdf

-El Blog Energía. El propano: una buena solución para calentar tu casa. Recuperado el 14 de setiembre de 2014 en:

http://elblogenergia.com/articles/el-propano-una-buena-solucion-para-calentar-tu-casa-

CALOR DE REACCIÓN. Equipo 1: Yo si trato de aprobar, Químicos y Los Radioactivos

[Visto: 1846 veces]

 

imagen-eq1-tema1-q2151

CONCEPTOS

Calor:

Es la energía transmitida a causa de una diferencia de temperatura entre un sistema y sus alrededores. El calor q es el aumento de energía interna ∆E  del sistema.

q = ∆E + w

En esta ecuación se expresa la ley de conservación de la energía y también el primer principio de la termodinámica.

Si el calor es absorbido entonces el valor de “q” será positivo y si es cedido por el sistema será negativo.

Capacidad calorífica:

Es el intercambio de calor que puede producir el cambio de temperatura de un sistema o el cambio del estado en el que se encuentra el sistema.

C = δQ / dt

δQ :cantidad infinitesimal de calor

Calor de reacción:

Se encuentra definida como la energía absorbida por un sistema cuando los productos de una reacción se encuentran  a la misma temperatura que los reactantes. Si el sistema libera energía se denomina exotérmico  y si absorbe energía se denomina endotérmico. En reacciones exotérmicas, se necesita menor cantidad de calor para romper enlaces que en una reacción endotérmica.

Si la reacción se realiza a presión constante, el calor de la reacción sería igual a la variación de la entalpia.

El calor de reacción puede ser calculado a partir de entalpias de formación de los productos y  reactantes. Esta está dada por:

imag2-eq1

Energía de enlace:

Es la energía aproximada que se necesita para romper un enlace de cualquier compuesto en el que se intervenga. También se podría decir que es la energía total promedio que se necesita para romper un mol de en laces dado (en estado gaseoso).

En enlaces estables la energía de enlace son grandes, los principales enlaces son covalentes, metálicos e iónicos.

 

Entalpía:

Es una función de estado extensiva y una magnitud termodinámica. Su variación expresa la medida de la cantidad de energía absorbida o liberada por un sistema termodinámico, es decir es la cantidad de energía que un sistema intercambia con su entorno.

 

Entalpía de formación:

Es el calor producido o el calor necesario para formar un mol de un compuesto a base de sus elementos en su forma más estable (1 atm de presión y 298 K de temperatura).Cuando se trata de una reacción exotérmica esta entalpia viene a ser negativa mientras que cuando la reacción es endotérmica la entalpia tiende a ser positiva y resulta nula cuando los compuestos se encuentran en la naturaleza.

BIBLIOGRAFÍA:

Del Barrio, M.

2006                      “Calor y trabajo: primer principio de la termodinámica”. Termodinámica básica, ejercicios .Barcelona: Ediciones UPC,pp.55-56.Consulta:20 de abril de 2015.

<https://books.google.com.pe/books?id=_b9POl9LC2sC&printsec=frontcover&dq=termodinamica&hl=es&sa=X&ei=FyI1Vaf_Gs3dsATN9oHoBg&ved=0CE4Q6AEwCQ#v=onepage&q=termodinamica&f=false

 

Mahan H. Bruce

2003                      “Primer principio de la termodinámica”.Elementary Chemical Thermodynamics. Barcelona: Editorial Reverté,pp.13-14.Consulta:20 de abril de 2015.

<https://books.google.com.pe/books?id=VvCxN04usUC&printsec=frontcover&dq=termodinamica&hl=es&sa=X&ei=Wxg1VYLYNfeNsQS6q4HYBA&ved=0CDIQ6AEwBA#v=onepage&q=termodinamica&f=false>

 

Waser

1972                      “Primer principio de la termodinámica”. Termodinámica química fundamental.                              Barcelona: Editorial Reverté,pp.29-53.Consulta:20 de abril de 2015.

<https://books.google.com.pe/books?id=3DuAzzYUpbYC&printsec=frontcover&dq=termodinamica&hl=es&sa=X&ei=UCo1VeWcFK3nsATTkYEI&ved=0CCEQ6AEwATgK#v=onepage&q=termodinamica&f=false>

APLICACIÓN

Los químicos han resuelto que, por razones de comodidad, las cantidades de calor denominadas calores de reacción, corresponden a la transformación de las masas indicadas por la ecuación de la reacción.

En la industria y en la vida diaria se usan productos y sustancias, ya sean de origen natural o preparados por la actividad humana, que se llaman combustibles) y cuya finalidad es la de producir calor cuando se queman. El oxígeno que interviene en estas combustiones, que son otras tantas reacciones exotérmicas, es habitualmente el contenido en el aire ambiente, y sólo en casos excepcionales se usa el oxígeno puro. Dado que la mayor parte de los combustibles no son sustancias puras, sino materiales complejos, y que las transacciones comerciales se realizan en kilogramos, en toneladas (1000 kg), la cantidad de calor producida por un determinado combustible se expresa no mediante calores de reacción, sino con su poder calorífico. Se llama así a la cantidad de calor producida por la combustión de 1 kg de combustible.

Los más utilizados son el carbón de leña (carbono con impurezas principalmente minerales: cenizas), los carbones fósiles (antracita, hulla, lignito y turba), que provienen de transformaciones milenarias de troncos de árboles que vivieron en épocas geológicas remotas, y la leña. Esta última proviene de distintas especies de árboles que al arder libera de 3800 a 5.000 Kilocalorías por kilogramo (Kcal/kg). La leña está compuesta principalmente por hidratos de carbono (celulosa, hemicelulosa, lignina), es un combustible heterogéneo muy complejo, Al arder parte se volatiliza y parte se quema como carbono fijo (que es el que forma la brasa). La parte volátil de la leña es la que contiene la mayor parte de las calorías (más del 60%). Esta parte volátil, que se desprende durante la combustión de la leña está compuesta por hidrógeno, metano, metanol, hidrocarburos, óxido y dióxido de carbono, etc. La temperatura de combustión de esos gases van desde los 360°C para el metanol hasta los 620°C para el monóxido de carbono.

Otra utilidad del calor de reacción es que se puede usar para saber las propiedades de los alimentos, como por ejemplo, la cantidad de calorías que estás pueden contener, las cuales las podemos calcular mediante las entalpías de formación, con eso se puede hacer un mejor control de la cantidad de calorías que consumimos a diario para poder llevar una dieta balanceada.

 

BIBLIOGRAFIA

http://www.productosnuke.com.ar/ecologia-la-lena-como-combustible/

http://www.revolucionesindustriales.com/maquinasindustriales/quimica/combustibles

 

CALOR DE COMBUSTIÓN – Equipo 2 (4 fantásticos, Heisenberg, JJON)

[Visto: 5810 veces]

imagen eq2

Imágenes tomadas de:

BALAREZO, MAURO

2012   “Retardantes de llama”. Pro Seguridad C.A. Valencia, 2012, Consulta: 24 de Abril de 2012.

< http://www.proseguridad.com.ve/incendios/retardantes-de-llama/>

ARTINAID

2013    “La Combustión”. Consulta: abril de 2013

< http://www.artinaid.com/2013/04/la-combustion/>

SIEMPRE EN LAS NUBES

2013    “¿Cuánto calor genera el quemador de un globo?”. Consulta: 1 de febrero de 2013

< http://siempreenlas-nubes.blogspot.com/2013/02/cuanto-calor-genera-el-quemador-de-un.html>

NAKKA, RICHARD

2007    “Teoría sobre motores cohete de propelente solido”. Consulta: 19 de abril de 2015

< http://nakka-rocketry.net/articles/teoria_de_los_motores_cohete.pdf >

Sigue leyendo

CALOR DE REACCIÓN – Equipo 1 (Los incompletos, Mad Science, IMPRO)

[Visto: 1235 veces]

imagen eq-1

Imágenes tomadas de:

BROWN, Theodore L., H. E. LE MAY y B. E. BURSTEN

2004                Química la Ciencia Central. 9ª edición. México: Pearson Educación

CHANG, Raymond

2006                Principios Esenciales de Química General. 4ª edición. Madrid: Mc Graw Hill Interamericana.

Sigue leyendo

ENERGÍA LIBRE Y ESPONTANEIDAD. Trabajo presentado por los grupos ANONYMOUS y Breaking Bad, Los Amigos de Ramanujan no participaron. H-204, 2014-2

[Visto: 2683 veces]

20141103-imagen_eq-5.jpg

Observación: Un punto de tensión en un objeto de acero actúa como ánodo donde el hierro se oxida a iones Fe2+ y se forman hendiduras. Los electrones producidos fluyen a través del clavo hacia las áreas expuestas al O2. Estas actúan como cátodos donde el O2 (g) se reduce a iones hidróxido, (OH)-

Conceptos:

1) Procesos espontáneos: una reacción que sí ocurre en determinadas condiciones.

Raymond Chang y Kenneth A. Gold (2013) QUIMICA       (pp. 802). 

McGraw- Hill Companies. Inc.

2) Entropía: suele describirse como una medida del grado de dispersión de la energía en un sistema entre las diferentes posibilidades en que ese sistema puede contener la energía. En otras palabras es el grado de desorden de un sistema. 

Raymond Chang y Kenneth A. Gold (2013) QUIMICA       (pp. 803).  

McGraw- Hill Companies. Inc.

3) Microestados: es el total de formas  en que las moléculas pueden ser distribuidas.

 Y en 1868, Boltzmann demostró que la entropía de un sistema está relacionada con el logaritmo natural del número de microestados. Un sistema con menos microestados tiene menor entropía  y un sistema con mayor microestados entre los cuales se puede esparcir mejor su energía (mayor dispersión) tiene mayor entropía.

Raymond Chang y Kenneth A. Gold (2013) QUIMICA       (pp. 804). 

McGraw- Hill Companies. Inc.

4) Cambio de entropía  en el entorno: si el proceso es exotérmico en el sistema, el calor trasferido aumenta el movimiento de las moléculas de los alrededores, por ello aumenta la entropía en el entorno. Si el proceso es exotérmico en el sistema, este absorbe el calor del entorno  y por tanto reducen los movimientos moleculares, por ende también la entropía del entorno.

Raymond Chang y Kenneth A. Gold (2013) QUIMICA       (pp. 811). 

McGraw- Hill Companies. Inc.

5) Energía libre de Gibbs: es la energía disponible para realizar trabajo.

Raymond Chang y Kenneth A. Gold (2013) QUIMICA       (pp. 816). 

McGraw- Hill Companies. Inc.

6) Energía libre estándar de reacción: es el cambio de energía libre en una reacción cuando se lleva a cabo en condiciones estándar, cuando los reactivos en su estado estándar se convierten en productos en su estado estándar.

Raymond Chang y Kenneth A. Gold (2013) QUIMICA       (pp. 816). 

McGraw- Hill Companies. Inc.

Aplicación:

1) La corrosión es un procesos espontaneo que experimentan los metales. Estos, al tener un contacto con el medio ambiente, experimentan un proceso de oxidación que gradualmente los va deteriorando, generando que estos pierdan su dureza. Este proceso es permanente ya que el metal está en constante contacto con el medio ambiente, ya sea una reja con el oxígeno del aire o un carro con el agua con que se lava o la lluvia, etc.

 Una característica importante de los procesos de corrosión es que los eventos ocurren espontáneamente en la naturaleza, en términos termodinámicos, esto equivale a decir que la variación de energía libre (∆G0) de la reacción global es menor que cero.

 La corrosión ordinaria, es un proceso redox por el cual los metales se oxidan por medio del oxígeno O2, en presencia de humedad. El oxígeno en estado gaseoso es un agente oxidante, y la mayoría de los metales tienen potenciales de reducción menores que éste, por lo tanto son fácilmente oxidables.

 Se sabe que la oxidación de los metales tiene lugar más fácilmente en puntos donde la tensión es mayor (donde los metales son más “activos”). Así, un clavo de acero, que en su mayor parte es hierro, se corroe primero en la punta y en la cabeza. Un clavo doblado se corroe más fácilmente en el recodo.

 

 20141103-aplica-eq-5.jpg

 

 Algunos de los procesos más familiares de corrosión son la herrumbre del hierro y el acero y la formación de pátina verde en el cobre y sus aleaciones bronce y latón.

No siempre que se presenta la oxidación de un metal existe corrosión, en algunos casos el óxido formado es resistente y forma una capa gruesa de óxido que impide que el resto del material continúe oxidándose. Esto fenómeno es común en materiales de aluminio, zinc y magnesio.

 

Sin embargo, la corrosión es un fenómeno mucho más amplio que afecta aún materiales no metálicos (cerámicas, polímeros, etc.), que sufren corrosión mediante otros mecanismos dependiendo del medio ambiente.

 20141103-aplica-2-eq-5.jpg

20141103-aplica-3-eq-5.jpg

 Importante: En la espontaneidad de un proceso influye el signo de la energía intercambiada y la variación en el desorden correspondiente a las partículas del sistema, de tal modo que,  cualquiera que sea la temperatura a la que tenga lugar una reacción en la que se desprenda energía y aumente el desorden, dicha reacción será espontánea. Esta es la razón de que la mayor parte de las reacciones químicas que se verifican espontáneamente en condiciones estándar sean exotérmicas, es decir, se trate de reacciones en las que se desprende energía. En el caso de las reacciones exotérmicas la energía liberada se transforma, de energía en forma química, en otras formas como son energía térmica, luminosa o sonora; con cierta frecuencia van, además, acompañadas de emisión de llamas y humo.

20141103-aplica-4-eq-5.jpg

Es importante recalcar que este proceso de espontaneidad al igual que la variación de la energía libre de Gibbs son características que determinan las condiciones necesarias para el desarrollo de una reacción química. Esto es necesario para el desarrollo industrial a nivel internacional, además de hacer más efectivo el proceso químico. Sobre es más fácil usar el ∆H° o el ∆E o el ∆S o el ∆G que son funciones de estado y no depende del proceso de cambio.

 

 

BROWN, Theodore

2009                                  “Procesos espontáneos”. En PERSON EDUCACIÓN. Química, la ciencia                      central. Decimoprimera edición. México, PP. 802-821

 

Sigue leyendo

ENTROPÍA Y ESPONTANEIDAD. Trabajo presentado por los grupos Entropía, Japy Ending y Los daltónicos, H-204, 2014-2

[Visto: 2134 veces]

20141103-imagen-eq-4.jpg

 

CONCEPTOS CLAVE

Entropía:

La entropía es representada con la letra S y mide en forma directa el grado de desorden de un sistema. L a entropía es una función de estado, ya que solo va a depender las condiciones iniciales y finales, también observamos que es una propiedad extensiva porque depende de la cantidad de materia. Podemos ordenarlo de esta manera:

 

Ssólido <  Slíquido <  Sgas  

 

Si aumenta el desorden: Sf > SI  à S > 0

PARA UN PROCESO ESPONTÁNEO:

ΔS = Sfinal – Sinicial

 Y tenemos que:

ΔS > 0   Aumento del desorden
ΔS < 0   Disminución del desorden

 

En un sistema aislado y a volumen constante (que no puede intercambiar ni materia ni energía con el entorno) se dará espontáneamente aquel proceso en el que se produzca un aumento de la entropía, esto es, aquel proceso en el que aumente el desorden. Es decir, en general, los sistemas tienden a un aumento del desorden. Es por este motivo que existen reacciones endotérmicas que son espontáneas; reacciones que por criterios energéticos pareciera que no deben producirse espontáneamente y que, sin embargo, sí ocurren de este modo, porque en el transcurso de las mismas la entropía aumenta considerablemente.

 Entropía estándar:

La entropía es una medida del grado de dispersión de la energía en un sistema entre las diferentes posibilidades en que ese sistema puede contenerla. A mayor dispersión, mayor entropía. La entropía estándar viene a ser la entropía absoluta de una sustancia a 1atm y 25°C.

 Segunda ley de la termodinámica:

La entropía del universo aumenta en un proceso espontáneo y se mantiene constante en un proceso que se encuentra en equilibro.

ΔSuniv = ΔSsist + ΔSent ≥ 0

Tercera ley de la termodinámica:

La entropía de una sustancia cristalina perfecta es cero a la temperatura del cero absoluto.

S° (0 K) = 0

 Espontaneidad de las reacciones químicas

En el mundo y la naturaleza existen muchos procesos químicos pueden ser procesos físicos como también reacciones químicas. Un proceso espontáneo es aquel que sucede sin necesidad que haya un aporte energético; como por ejemplo, una pelota que este rodando a lo largo de una pendiente, pues está no se detendrá hasta que no llegue a una zona llana y pierda su energía cinética. Asimismo, una reacción espontánea química es aquella cuando una vez inicia la reacción transcurre completamente cuando todos los reactivos se han transformado en productos.

Los procesos espontáneos son irreversibles, ya que no se pueden revertir a menos que tengas un aporte energético externo.

Podríamos pensar que una reacción exotérmica, que desprende calor al entorno, siempre será espontánea, dado que los sistemas tienden a un mínimo de energía, y en las reacciones exotérmicas los productos tienen menos energía que los reactivos (tal y como vemos en el diagrama). Es cierto que muchas reacciones espontáneas son exotérmicas y que la mayoría de reacciones exotérmicas son espontáneas; sin embargo, esto no es siempre así. Existen reacciones exotérmicas que no son espontáneas a ciertas temperaturas, y reacciones endotérmicas que sí lo son.

Por tanto, el criterio energético, es decir, el signo de la variación de entalpía ΔH, no es suficiente por sí mismo para decidir si un proceso será o no espontáneo, ya que en verdad, si consideramos el conjunto sistema-entorno, la energía siempre se conserva.

 Concepto de equilibrio en la reacciones químicas:

Las reacciones químicas no tienen lugar siempre a la misma velocidad, ni se alcanza siempre a una misma transformación completa de los reactivos en productos.

Si por ejemplo analizamos esta reacción:

aA+bB → cC+dD

en la que inicialmente solo tenemos reactivos A y B , veremos que las moléculas de Ao B son muy numerosas y chocan entre sí rompiéndose los enlaces que la forman, liberando átomos y formándose nuevos en laces entre ellos, dando lugar a las sustancias producto C y D, produciéndose la reacción inversa .A medida que la reacción va progresando puede que la reacción regrese a su estado inicial a esto se le llamaría reacción inversa. Por lo tanto, llega un momento en que las velocidades de reacción en ambos sentidos se igualan. El número de moléculas de cualquier especie permanece constante y por lo tanto también permaneces constante la concentración de las mismas. Se dice entonces que la reacción ha alcanzado un estado de equilibrio químico.

Se ha visto el tema de termoquímica que la función de estado energía libre se definía como: G=HTS , y que dicha función medía la energía libre de cada reactivo o producto de la reacción química, de forma que podía calcularse la variación de energía libre de una reacción mediante la expresión : ΔG=ΔH-TΔS.

Puede demostrarse que para una reacción homogénea gaseosa existe una relación entre el valor de ΔG y el valor de la constante de equilibrio Kp, dada la ecuación:

ΔG= -RTlnKp

Esto indica que las reacciones espontáneas (ΔG<0), presentan constantes de equilibrio mayores que la unidad, y por lo tanto, el equilibrio está muy desplazado hacia la derecha, es decir hacia la formación de productos.

En las reacciones espontáneas (ΔG>0), tienen constantes de equilibrio muy pequeñas, tanto menores cuanto más positivas sea la variación de energía libre, y por tanto el equilibrio estará muy desplazado hacia los reactivos, de forma que se producirán bajas concentraciones de productos.

Aplicación:

AGUJEROS NEGROS:

La formación de los agujeros negros, producto del colapso de una estrella, es un claro ejemplo de un proceso espontaneo ya que en él no interviene ninguna fuerza ajena  a la naturaleza, además resulta inverosímil pensar que puede ocurrir el proceso contrario de manera natural, es decir que a partir de un agujero negro se forme una estrella.

20141103-aplica-eq4.jpg

En un principio se pensó que la segunda ley de la termodinámica no se aplicaba a los agujeros negros, sin embargo los trabajos de Jacob D. Bekenstein sugirieron que podría conservarse la ley siempre y cuando se introdujera el concepto de  “ENTROPIA GENERALIZADA” que se calcula a través de la entropía dada por la segunda ley y una formula dada en función del área del agujero negro, desarrollada por Stephen Hawking. Este concepto se introdujo debido a la complejidad de 

la configuración interna de los agujeros negros y a nuestra falta de información respecto a lo que pasa dentro de este, aunque se cree que mayormente se mantiene a temperatura constante. Si tenemos cierto sistema con algún valor de entropía S que traspasa el horizonte de eventos de un agujero negro, la entropía asociada con el universo visible disminuiría. Sin embargo el crecimiento del área del agujero negro compensa la entropía perdida debido a la desaparición del sistema, de una manera irreversible

Al formarse un agujero negro, este tendera a estabilizarse aun si después o durante su creación se le adiciona materia, en esta fase su área disminuye, sin embargo una vez pasado esto tendera a aumentar de tamaño al tiempo que consume materia, por ello su entropía aumentara(proporcional al área).

BIBLIOGRAFIA:

http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/50/html/sec_8.html

imágenes:

http://tarazfisicaquimica.blogspot.com/2012/01/termoquimica-parte-ii.html?m=1

[9/15 10:13] Raul: http://cynverbd.wordpress.com/2011/05/11/entropia/ [9/15 10:16]

Raul: http://quercusprevencionderiesgoslaborales.blogspot.com/2012/08/ciencia-entropia-segunda-ley-de-la.html?m=1 [9/15 10:17]

Raul: http://alquimiayciencias.blogspot.com/2012/08/el-misterio-de-la-entropia.html?m=1 [9/15 10:18]

Raul: http://e-ducativa.catedu.es/44700165/aula/archivos/repositorio/4750/4848/html/2_la_entropa.html

Fuente:

 

MASTERTON, WILLIAM L.; HURLEY, CECILE

2003                      QUIMICA: Principios y reacciones. 4ta ed. Madrid: Thomson Learning; Paraninfo.

 CHANG, R.


2007                    Química. Novena edición. México D.F.: McGraw-Hill. Pág. 784

 CHANG, R.


2007                   Química. Novena edición. México D.F.: McGraw-Hill. Pág. 785

CHANG, R.


2007                   Química. Novena edición. México D.F.: McGraw-Hill. Pág. 789

Química2° Bachillerato

                                 Bloque VII: Equilibrio químico

                                  http://www.ieslaaldea.com/documentos/fisicayquimica/equilibrioquimico.pdf

Sigue leyendo