Las proteínas son ingredientes importantes en la industria alimentaria no solo debido a su alto valor nutricional sino también debido a sus propiedades funcionales. Estas propiedades son producto de las interacciones fisicoquímicas entre los componentes de un alimento. Estas interacciones pueden involucrar moléculas de solvente, moléculas de soluto, otras moléculas de proteínas o sustancias que están dispersas en el solvente. Entre las propiedades mayormente empleadas se encuentran las propiedades de superficie: las propiedades espumantes y emulsificantes, las cuales son muy empleadas en la industria alimentaria.
Un gran número de alimentos son emulsiones, dispersiones y espumas y en estos sistemas, las proteínas (gracias a su propiedades emulsificantes) en conjunto con los lípidos y carbohidratos son estabilizantes importantes. Las emulsiones están definidas como una dispersión de dos o más líquidos inmiscibles en los cuales uno se encuentra disperso en los demás a manera de pequeñas gotas (0,1-100 um). En la industria alimentaria las emulsiones son de dos tipos mezclas de aceite/agua (O/W: leche, cremas, aliños de ensalada, mayonesa y sopas) y agua/aceite (W/O: margarina y mantequilla).
La propiedad emulsificante de las proteínas es la responsable de que estas macromoléculas participen en la formación y estabilización de las emulsiones, debido a la naturaleza anfifílica (presentan grupos hidrofílicos e hidrofóbicos) y a las habilidades de formación de películas. Cuando las proteínas son usadas para preparar emulsiones, el sistema se convierte en uno más complejo debido a que se forma una nueva área superficial.
Las emulsiones son mezclas termodinámicamente inestables de líquidos inmiscibles, si se les aplica energía los componentes de la emulsión pueden estar dispersos pero un incremento en la energía de la superficie produce que las dos fases se fundan (coalescencia) a menos que exista una barrera de energía que lo impida. Las gotas dentro de la emulsión se pueden estabilizar añadiendo moléculas que son parcialmente solubles en ambas fases, en la industria alimentaria se emplean una serie de pequeñas moléculas emulsificadores. La proteínas son capaces de desplegarse en la interfase (agua /aceite) y cumplir esta función, las proteínas recubren las gotas de grasa y proporciona una barrera de energía que permite la unión de partículas y la separación de fases.
Las proteínas son mucho más grandes y más complejas que otras moléculas emulsificadoras simples, la formación de una emulsión estabilizada por proteínas requiere que una molécula de proteína alcance la interfase (agua/aceite) y luego se despliegue para que sus grupos hidrofóbicos puedan entrar en contacto con la fase lipídica. En consecuencia, la capacidad de formar una emulsión (cantidad de gramos de aceite por gramos de proteína retenida) tiene a ser menor con las moléculas emulsificadoras simples. Sin embargo, una vez que las moléculas de proteínas alcancen la interfase, se pueden formar películas viscoelásticas resistentes que soporten tensiones mecánicas y proporcionen estabilización electrostática (dependendiendo de las condiciones del solvente) y estabilización estérica (dependiendo de la proteína).
Las propiedades fisicoquímicas de las proteínas juegan un papel importante en la determinación de las habilidades emulsificadoras. Por ejemplo, la hidrofobicidad influye en que la proteína pueda adsorberse sobre el lado lipídico de la interfase, si esto ocurre de manera adecuada se tiene una mayor capacidad de formar la emulsión. En contraste, la carga superficial de la proteína influye en su solubilidad en la fase acuosa, donde se desea una alta solubilidad para tener mayores velocidades de difusión a la interfase. Cuando se forma una película viscoelástica, las gotas de la emulsión pueden tener carga positiva o negativa dependiendo de si el pH de la emulsión está por encima o por debajo del punto isoeléctrico de la proteína. Si existe una alta repulsión electrostática entre las gotas de aceite la emulsión tiene una mayor estabilidad, mientras que en condiciones de pH cercanos al punto isoeléctrico de la proteína dominan los fenómenos de floculación y agregación lo cual conduce a la coalescencia e inestabilidad.
BIBLIOGRAFÍA:
- Lam, R. S. H., & Nickerson, M. T. (2013). Food proteins : A review on their emulsifying properties using a structure – function approach. Food Chemistry, 141(2), 975–984.
- Pearce, K. N., Kinsella, J. E. (1978) Emulsifyng Properties of Proteins: Evaluation of a Turbidimetric Technique. Agric. Food Chem. 26 (3), 716- 723.
- Cabra, V., & Arreguín, R. (2008). Emulsifying properties of proteins. Soc. Quím. Méx. 2(2), 80-89.