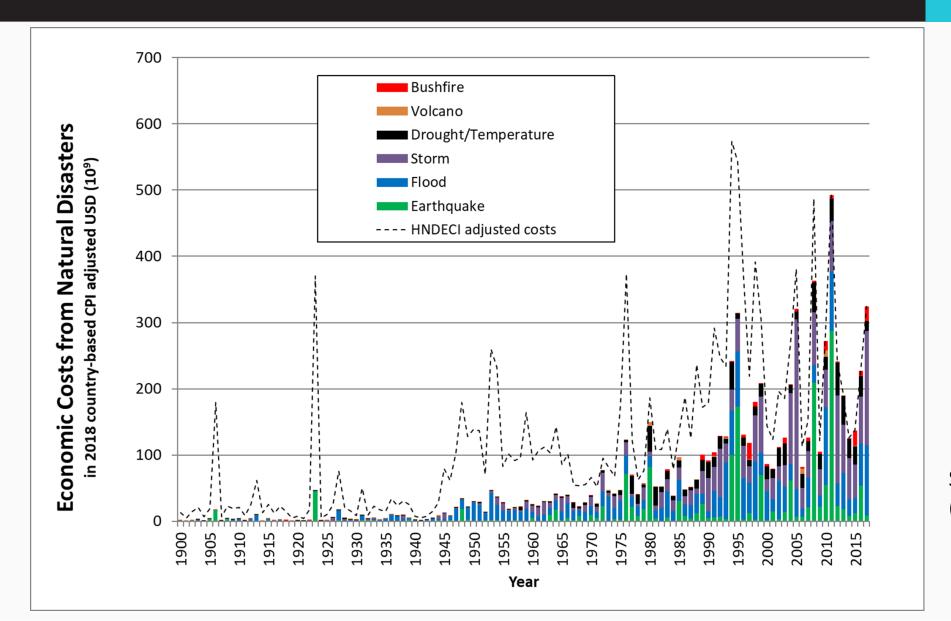
Role of Academic, Public and Private Sectors in Disaster Risk Quantification: Demand, Applications, and future trends


Rashmin Gunasekera, PhD

Historical losses not a good indicator for future losses

Source: Daniell et al (2018), EGU, Vienna.

Are we prepared? - Impact of seismic codes — but compliance?

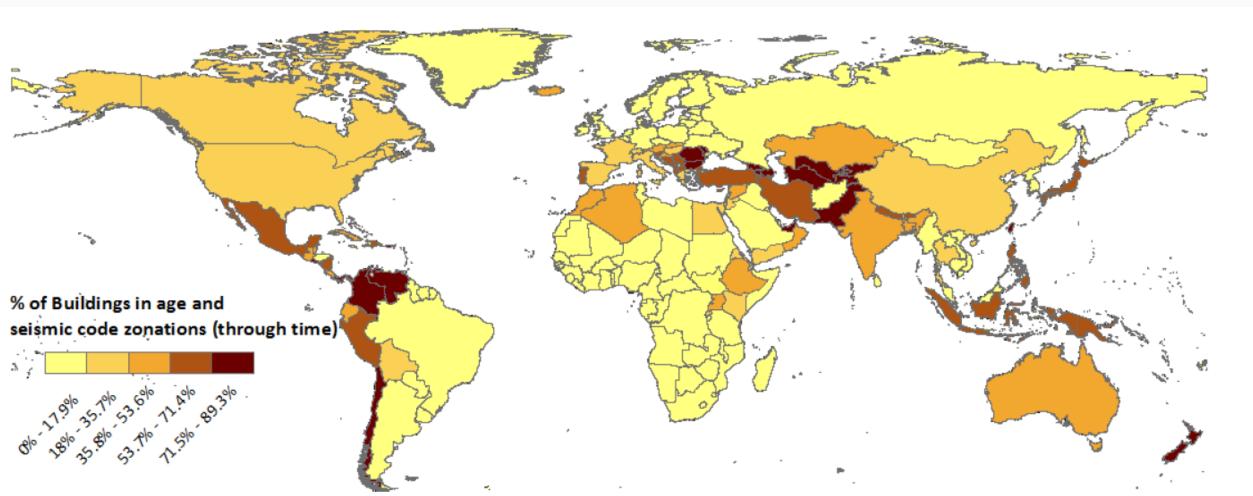
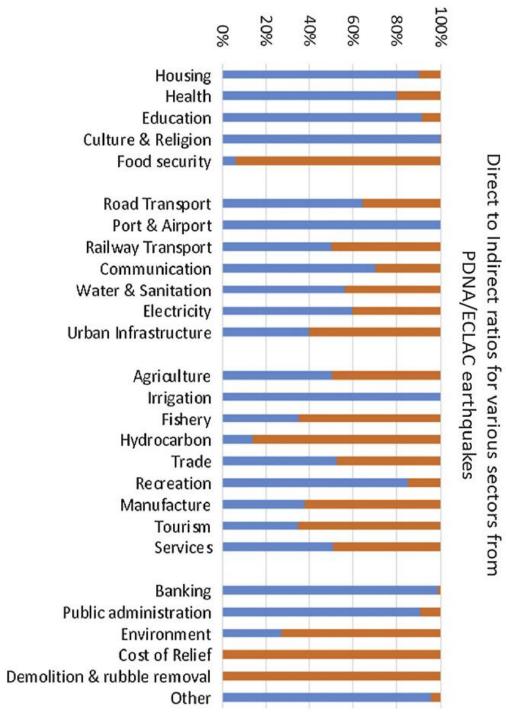


Figure 2. The percentage of buildings in each country that should have been built under a seismic resistant code (excluding small building provision)

Ecuador Earthquake Apr 2016


Direct and Indirect Economic impacts

Social Sectors

Infrastructure Sectors

Productive Sectors

Cross-cutting Sectors

Direct

Indirect

We all have a role to play in DRM:

-Academic,
Public and
Private sectors

Quantify Risk
- Use of Technology

Developing Policies and Regulations

to reduce physical and fiscal vulnerability

Community
Preparedness and
Education

Academic, Public and Private sector

Private and Govt. assets inventory determination and protection

Business Continuity planning

Conversations between Government, (I)NGOs, Universities and industry e.g. PPPs

PPPs to can benefit public and private sector

Need for Disaster Risk Quantification

- Disaster (or catastrophic) events can jeopardize the financial stability of companies and national, provincial governments.
- Before Poor identification of extremes no geography, no science, no engineering
- Key questions *before* an event with respect to management of disaster risk are:
- How much is at risk?
- What would it take to reduce the risk?
- Where and what can we prioritize as interventions?
- What are their costs and benefits?

Source: Atkinson et al. (2006)

Solution - Disaster Risk Quantification!

COUNTRYDISASTER

RISK PROFILES WORLD BANK

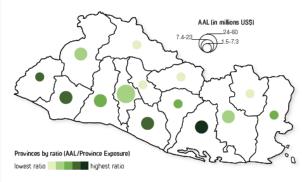
EL SALVADOR Earthquakes and Hurricanes RISK PROFILE

What is a country disaster risk profile?

An estimation of the potential economic losses to property caused by adverse natural events.

Country Disaster Risk Profile

Applications


- Develop key baseline data
- > Evaluate impact of disasters
- Promote and inform risk reduction
- Inform disaster risk financing

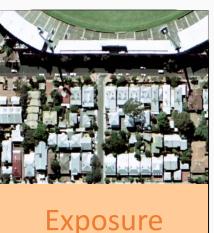
Country At-A-Glance

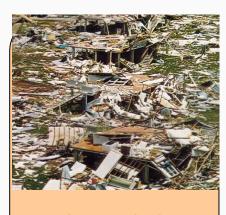
GDP USS | Population | Total Building Exposure USS (Replacement Value) | 25.2 billion | 6.4 million | 37.1 billion | Gross Capital | Public 16%

Two representations of earthquake risk

Absolute Risk: The larger the circle, the higher the Annual Average Losses that the province could potentially incur over the long term.

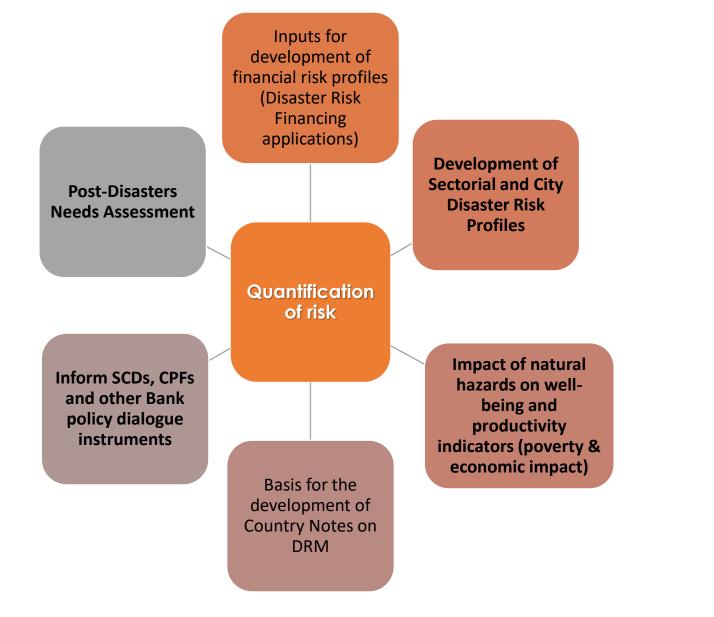
Relative Risk: The darker the color, the higher the ratio of AAL/Province Exposure. The darkest color represents the province of Usulutan which has a higher proportion of vulnerable structures due to construction types and/or potentially higher earthquake intensity.


- ➤ The earthquake risk in El Salvador is more significant than the hurricane risk.
- Annual Average Loss (AAL) from earthquakes is US\$ 175.93M (0.70% of GDP) and from nurricanes is US\$ 2.94M (0.01% of GDP).
- The Probable Maximum
 Loss for earthquakes (250
 year return period) is US\$
 3.9B (15.5% of GDP)
 and for hurricanes (250
 year return period) is US\$
 374M (1.5% of GDP).
- Single-family, residential houses constructed with reinforced masonry bearing walls are the buildings most vulnerable to earthquekes accounting for over 31% of AAL.


What is Disaster Risk Quantification

A quantification of the likelihood (probability) of estimated property, infrastructure, monetary or casualty losses caused by adverse natural event in a specific area.

Hazard



Vulnerability

Fatalities, injuries, displaced persons Damage to buildings, infrastructure, financial loss

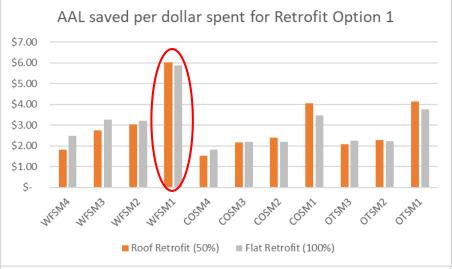
Impact

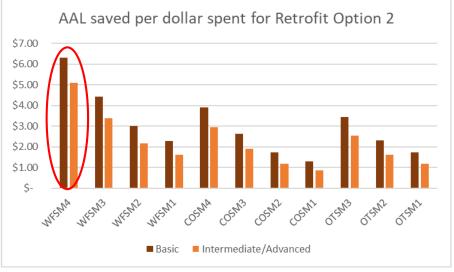
What can we do with this information?

Product	Purpose	Scale	Data Requirements	Cost
Qualitative national risk profile	For advocacy and initiation of DRM dialogue	National	Low: Requires global, regional, and/or national data sets	\$
Community-based disaster risk assessment	To engage communities, communicate risk, and promote local action	Community level Low: Typically based on historical disaster events		\$
Quantitative national risk profile	For advocacy and initiation of DRM dialogue based on quantitative assessment	National	Low-moderate: Requires global, regional, and/or national data sets	\$\$
Asset-level risk assessments, including cost-benefit and engineering analysis	To inform design of building- level/asset-level risk reduction activities and promote avoidance of new risk	Building / infrastructure level	Moderate-high: Requires high-resolution local data for large spatial areas with clear articulation	\$\$
Macro-level risk assessment for risk reduction, including cost-benefit analysis	To inform urban/regional risk reduction measures	Urban, regional, national	Moderate-high: Requires moderate to high resolution across large spatial areas	\$\$\$
Risk identification to identify critical infrastructure and establish early warning systems	To inform preparedness and risk reduction, based on understanding of potential damage at the regional/local level	Urban, regional, national	Moderate-high: Requires asset-level information across large spatial areas	\$\$-\$\$\$ (broad range depending on geographic scope)
Catastrophic risk assessment for financial planning	For financial and fiscal assessment of disasters and to catalyze catastrophe risk insurance market growth	National to multi-country	High: Requires high- resolution, high-quality data of uncertainty	\$\$\$

Residential Exposure model for Social Protection Analysis

Proposed 2017 Exposure Model Input Values


Social-	Housing Unit	Unit Cost of	
Structural	Floor Area	Construction	
Vulner. Class	(m2)	(USD/m2)	
WFSM4	50	50	
WFSM3	55	100	
WFSM2	62	155	
WFSM1	70	390	
WFSH3	60	125	
WFCO1	75	400	
COSM4	60	75	
COSM3	67	150	
COSM2	78	245	
COSM1	90	540	
COSH3	70	175	
COSH1	100	570	
COCO4	64	90	
COCO3	72	180	
COCO2	80	280	
COCO1	125	635	
OTSM3	56	115	
OTSM2	62	180	
OTSM1	78	425	
OTSH3	59	140	
OTSH1	81	450	
ОТСО3	64	150	
OTCO2	70	260	


	WF= wooden structure		
Outer Walls	CO = concrete blocks or panels		
	OT = other types of outer wall		
Roof Cover	SM = sheet metal roof		
	SH = roof shingles		
	CO = concrete roof (slab)		
	4 = extremely poor		
Socio-economic Group	3 = poor		
	2 = Not poor, but Vulnerable		
	1 = Not poor, Not Vulnerable		

- 23 TYPOLOGIES (combination of outer wall, roof cover & socio-economic vulnerability group)
- 2007 LIVING CONDITIONS SURVEY (socio-economic vulnerability data)

What would it take to reduce the risk?

A comparison of the "to code" and "as is" runs: Probable Maximum Loss Curve in El Salvador

In terms of the PML (probable maximum loss), the total run is around 67-73% of the original "as is". For a 500 year event, it could be expected that a reduction of close to \$2 billion would be expected with full code influence.

Use of profiles in LCR region (side benefits)

- City level risk assessments
 - Stock value distribution and analysis
 - Down scalable method

- Sectorial risk assessments
 - Exposure and transport profiles
 - Private and sovereign liability distribution

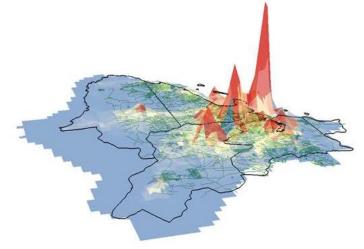
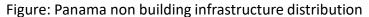
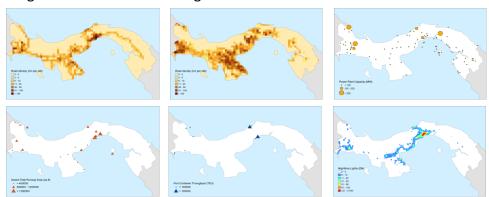




Figure: Dar es Salaam – building stock value distribution (Source: Africa Anchor; GSURR)

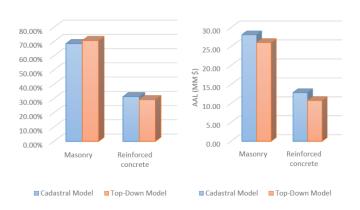
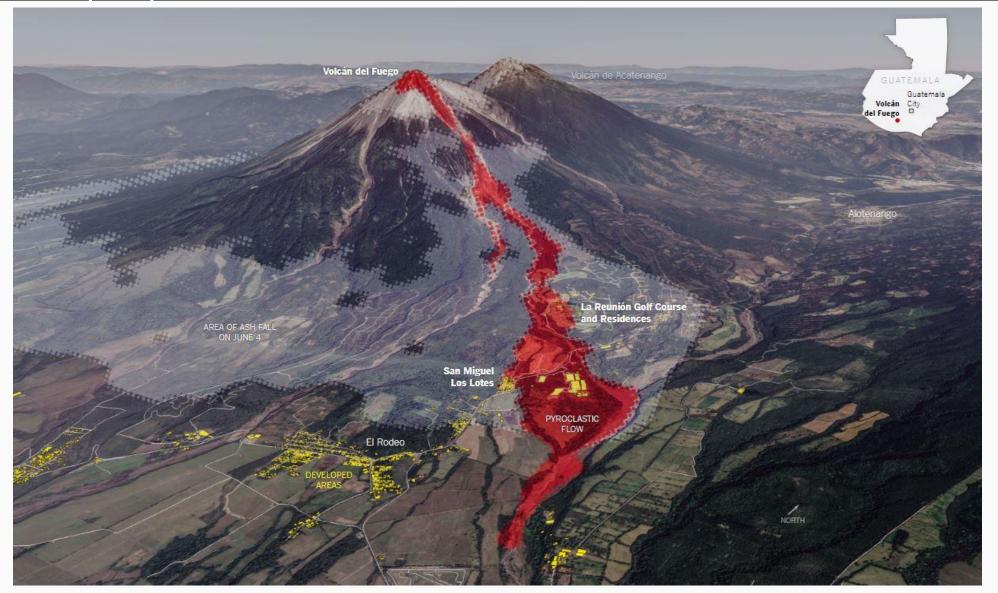



Figure 37 AAL in terms of the residential and nonresidential splitting of the Cuenca buildings. Left: In relative terms of each, model (cadastral and Top-Down). Right: in absolute values of AAL in millions dollars

DISASTER RESPONSE: Guatemala Volcano Fuego Eruption (Jun 2018) Pyroclastic flow in perspective

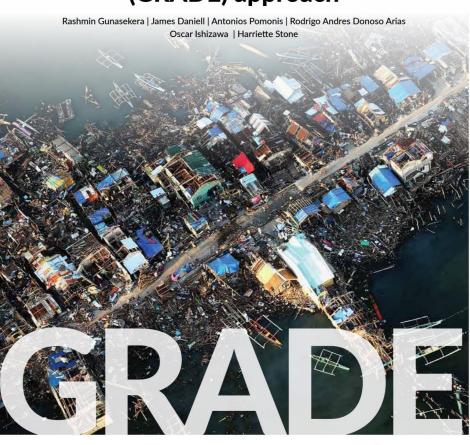
Common misconceptions in the media such as that of El Rodeo being destroyed stem from the fact that the village San Miguel Los Lotes (with around 260 buildings destroyed or severely damaged) is part of El Rodeo. However, the main part of El Rodeo is unaffected by the pyroclastic flows and lahars and only received some ashfall.

Source: nyt

Quantifying damage and implications

San Miguel Los Lotes (depth of PF material)

San Miguel Los Lotes in parts buried under 1-2 m of pyroclastic material (vulnerability of building stock)



Source: UK daily express

Risk: Ash fall — Critical infrastructure

Code:		Code:	D0	D1	D2	D3	D4	D5
		Description:	No damage	Cleaning	required	Repair	required	Beyond economic repair
	S	Function	Fully functional	Closure of runway			Indefinite closure	
RITICAL INFRASTRUCTURE TYPE:	- A	Damage	No damage (but l	oss of revenue costs) Possible runway surface degradation		Collapse of critical buildings; possible runway surface degradation ³		Complete burial
		Thickness	0 mm		>0 m	>0 mm		>500 mm
		Function	Fully functional	Temporary disruption, e.	g. flashover of insulators	Disruption re	equiring repair	Permanent disruption
	•	Damage	No damage	No damage to	components	Damage to critical components; long delays in receiving replacement components.		Structural damage
		Thickness	0 (0-20) mm	5 (1-20) mm		20 (2-:	20 (2-100) mm	
	Function Damage Thickness	Function	Fully functional	Reduced visibility and traction	Signals disrupted		king operation unsafe; ough ash accumulation	Impassable
		No damage Possib		Possible abrasion and	Possible abrasion and/or corrosion of signal components and track		Complete burial	
		Thickness	0 (0-5) mm	0.5 (0.1-10) mm	1 (0.1-20) mm	30 (2-100) mm		100 (50-200) mm
12	Roads	Function	Fully functional	Reduced visibility and traction	Road markings obscured	2WD vehicles obstructed	4WD vehicles obstructed	Impassable
		Damage	No damage		Possible road surface and marking abrasion	Road surface and marking abrasion		Complete burial
		Thickness	0 (0-5) mm	0.5 (0.1-10) mm	2 (1-20) mm	50 (10-100) mm	150 (50-300) mm	n/a 4

Methodology Note on the Global RApid post-disaster Damage Estimation (GRADE) approach

Report Available Online at:

https://www.preventionweb.net/publications/view/57947

The day after, Government grappled with questions such as:

How do we assess damages?

Where are the damages distributed?

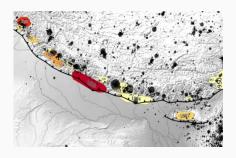
What is the socio-economic impact?

Existing Post-Disaster Tools

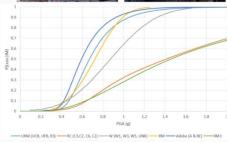
The Solution:

Global **Rapid** Post disaster damage assessment (GRADE)

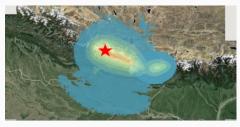
Existing Methods


2 months

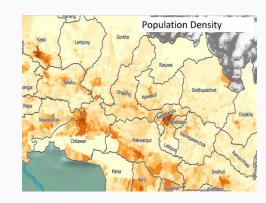
GRADE



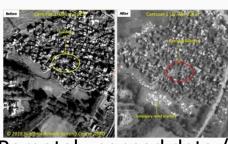
Data sets in its Analysis



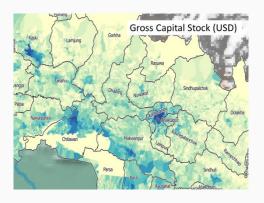
Historical damage data



Vulnerability/Built Data

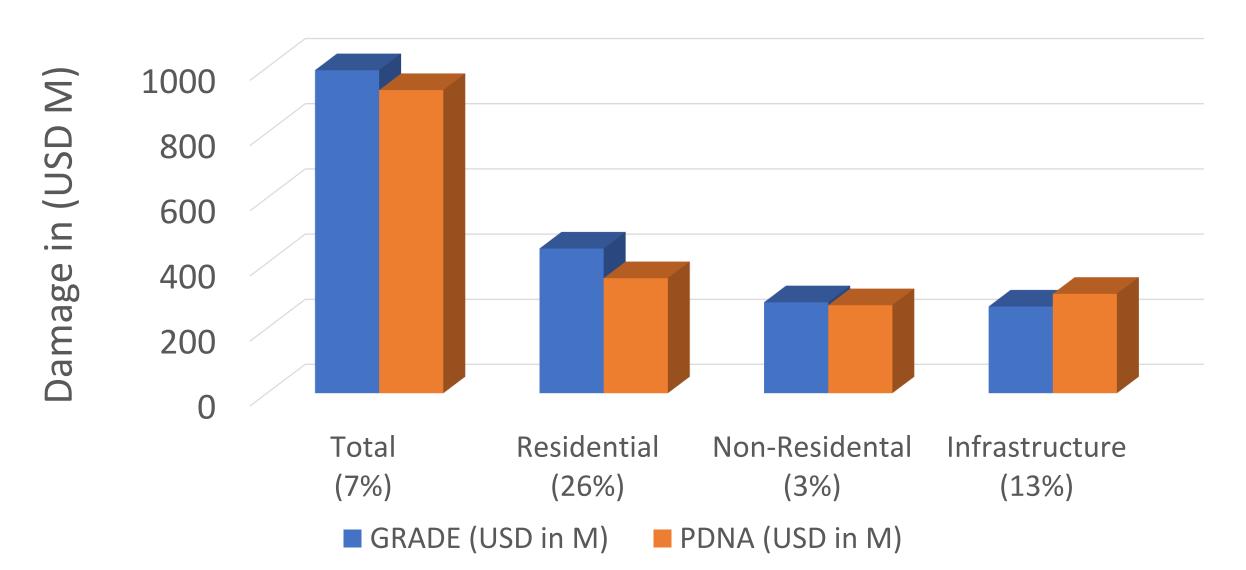


Event scientific data



Census data

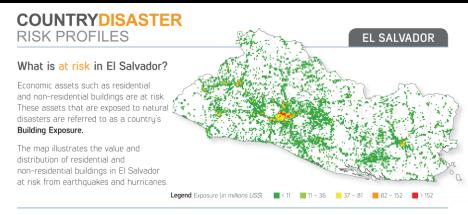
Expert knowledge



Remotely-sensed data / Social Media

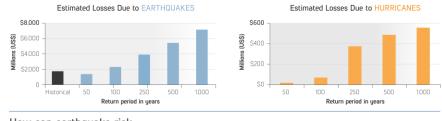
Socioeconomic data

Dominica - HU Maria – Sept 18th 2017 GRADE (6 days) vs PDNA (58 days)

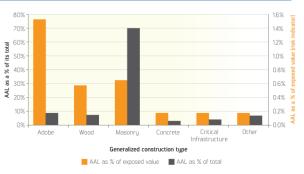


Future Related Activities:

Scaling up to other sectors/ countries


Collaboration with the Private Sector

Build critical information to increase resilience to climate-related risks


What are the potential losses in El Salvador?

These graphs show the estimated potential future losses to El Salvador that could be caused by earthquakes and hurricanes that occur within a given return period. In 2001, a magnitude 7.6 earthquake struck El Salvador. If this historical event were to happen in 2015, it would cause losses of USS 1.810M. amounting to 7% of GDP.

How can earthquake risk be reduced?

Risk reduction interventions could be prioritized in the highest risk ranked province of Usulutan (see map on previous page). At an estimated additional cost of USS 130M, most single family adobe buildings in Usulutan could be retrofitted up to the standards of reinforced concrete buildings which would reduce their risk to earthquakes by approximately 80%. This would also reduce the country's AAL bu 5%.

To learn more, visit: collaboration.worldbank.org/groups/cdrp or email cdrp@worldbank.org

Disclaimer:

• © 2018 International Bank for Reconstruction and Development / The World Bank:

1818 H Street NW

Washington DC 20433

Telephone: 202-473-1000

Internet: www.worldbank.org

- This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent.
- The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries.